2015 Volume 5 Issue 3
Article Contents

G. R. Nicklason. TWO GENERAL CENTRE PRODUCING SYSTEMS FOR THE POINCARÉ PROBLEM[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 284-300. doi: 10.11948/2015026
Citation: G. R. Nicklason. TWO GENERAL CENTRE PRODUCING SYSTEMS FOR THE POINCARÉ PROBLEM[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 284-300. doi: 10.11948/2015026

TWO GENERAL CENTRE PRODUCING SYSTEMS FOR THE POINCARÉ PROBLEM

  • We consider the polynomial system dx/dt=-y -axs+3yn-s-3 -bxs+1yn-s-1, dy/dt=x+ cxs+2yn-s-2 + dxsyn-s where n ≥ 3 is an odd integer and s=0,…, n -3 is an even integer. We calculate the first three nonzero Lyapunov coefficients for the system and obtain a Gröbner basis for the ideal generated by them. Potential centre conditions for the system are obtained by setting the basis elements equal to zero and solving the resulting system. This gives five basic solutions and within this set we find two well known classes of centres and three new centre producing systems. One of the three is a variant of one of the other new systems, so we obtain two general independent systems which produce multiple centre conditions for each n ≥ 5.
    MSC: 34A05;34C25
  • 加载中
  • [1] M. Briskin, J.-P. Francoise and Y. Yomdin, Center conditions, compositions of polynomials and moments on algebraic curves, Ergod. Th. & Dynam. Sys., 19(1999), 1201-1220.

    Google Scholar

    [2] J. Chavarriga, A class of integrable polynomial vector fields, Appl. Math. (Warsaw), 23(1995), 339-350.

    Google Scholar

    [3] L. Cherkas, Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12(1976), 944-946.

    Google Scholar

    [4] C. Christopher and J. Llibre, Algebraic aspects of integrability for polynomial systems, Qualit. Theory Dynam. Systems, 1(1999), 71-95.

    Google Scholar

    [5] C. Christopher and D. Schlomiuk, On algebraic methods for producing centers in polynomial differential systems, J. Fixed Point Theory Appl., 3(2008), 331-351.

    Google Scholar

    [6] J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations, J. Differential Equations, 147(1998), 435-454.

    Google Scholar

    [7] A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20(2001), 1-29.

    Google Scholar

    [8] J. Giné, On the number of algebraically independent Poincaré-Liapunov constants, Appl. Math. Comput., 188(2007), 1870-1877.

    Google Scholar

    [9] H.-C. Graf Von Bothmer, Experimental results for the Poincaré center problem, Nonlinear Differential Equations Appl., 14(2007), 671-698.

    Google Scholar

    [10] A. S Jarrah, R. Laubenbacher and V. Romanovski, The Sibirsky component of the center variety of polynomial differential systems, J. Symbolic Comput., 35(2003), 577-589.

    Google Scholar

    [11] N. G. Lloyd and J. M. Pearson, Computing center conditions for certain cubic systems, J. Comput. Appl. Math., 40(1992), 323-336.

    Google Scholar

    [12] G. R. Nicklason, Center conditions and integrable forms for the Poincaré problem, J. Math. Anal. Appl., 411(2014), 442-452.

    Google Scholar

    [13] G. R. Nicklason, Constant invariant solutions of the Poincaré center-focus problem, Electron. J. Diff. Equ., 130(2010), 1-11.

    Google Scholar

    [14] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, Jour. de Mathématiuqes, séries 37(1881), 375-422.

    Google Scholar

    [15] H. Zołądek and J. Llibre, The Poincaré center problem, J. Dyn. Control Syst., 14(2008), 505-535.

    Google Scholar

Article Metrics

Article views(1958) PDF downloads(678) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint