2015 Volume 5 Issue 3
Article Contents

Li Li. A GLOBAL SUPERCONVERGENT L∞-ERROR ESTIMATE OF MIXED FINITE ELEMENT METHODS FOR SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 313-328. doi: 10.11948/2015028
Citation: Li Li. A GLOBAL SUPERCONVERGENT L-ERROR ESTIMATE OF MIXED FINITE ELEMENT METHODS FOR SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 313-328. doi: 10.11948/2015028

A GLOBAL SUPERCONVERGENT L-ERROR ESTIMATE OF MIXED FINITE ELEMENT METHODS FOR SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS

  • In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order h2 in L-norm. Finally, a numerical example is given to demonstrate the theoretical results.
    MSC: 49J20;65N30
  • 加载中
  • [1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23(2002), 201-229.

    Google Scholar

    [2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, SpringerVerlag, New York., 1991.

    Google Scholar

    [3] Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77(2008), 1269-1291.

    Google Scholar

    [4] Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 75(2008), 881-898.

    Google Scholar

    [5] Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(2009), 382-403.

    Google Scholar

    [6] Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39(2009), 206-221.

    Google Scholar

    [7] Y. Chen and T. Hou, Superconvergence and L-error estimates of RT1 mixed methods for semilinear elliptic control problems with an integral constraint, Numer. Math. Theor. Meth. Appl., 5(2012), 423-446.

    Google Scholar

    [8] Y. Chen and T. Hou, Error estimates and superconvergence of RT0 mixed methods for a class of semilinear elliptic optimal control problems, Numer. Math. Theor. Meth. Appl., 6(2013), 637-656.

    Google Scholar

    [9] Y. Chen, N. Yi and W. B. Liu, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(2008), 2254-2275.

    Google Scholar

    [10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam., 1978.

    Google Scholar

    [11] J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44(1985), 39-52.

    Google Scholar

    [12] F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44(1973), 28-47.

    Google Scholar

    [13] M. D. Gunzburger and S. L. Hou, Finite dimensional approximation of a class of constrained nonlinear control problems, SIAM J. Control Optim., 34(1996), 1001-1043.

    Google Scholar

    [14] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 13(1979), 313-328.

    Google Scholar

    [15] T. Hou, Superconvergence and L-error estimates of the lowest order mixed methods for distributed optimal control problems governed by semilinear elliptic equations, Numer. Math. Theor. Meth. Appl., 6(2013), 479-498.

    Google Scholar

    [16] T. Hou and Y. Chen, Superconvergence of RT1 mixed finite element approximations for elliptic control problems, Sci China Math., 56(2013), 267-281.

    Google Scholar

    [17] L. Hou and J. C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 71(1995), 289-315.

    Google Scholar

    [18] G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20(1982), 414-427.

    Google Scholar

    [19] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin., 1971.

    Google Scholar

    [20] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43(2004), 970-985.

    Google Scholar

    [21] C. Meyer and A. Rösch, L-error estimates for approximated optimal control problems, SIAM J. Control Optim., 44(2005), 1636-1649.

    Google Scholar

    [22] R. S. McKinght and J. Borsarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11(1973), 510-542.

    Google Scholar

    [23] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Aspecs of the Finite Element Method, Lecture Notes in Math, Springer, Berlin., 606(1977), 292-315.

    Google Scholar

Article Metrics

Article views(2610) PDF downloads(916) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint