[1]
|
A. Atabaigi and H. R. Z. Zangeneha, Bifurcation of limit cycles in smll pertrrbations of a class of Hyper-elliptic Hamiltonian systems of degree 5 with a cusp, J. of Appl. Anal. and Compu., 1:3(2011), 299-313.
Google Scholar
|
[2]
|
T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of Li6nard equations, Math. Proc. Camb. Phil. Soc., 95(1984), 359-366.
Google Scholar
|
[3]
|
C. J. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12(1999), 1099-1112.
Google Scholar
|
[4]
|
M. Han, Liapunov constants and Hopf cyclicity of Lineard systems, Ann. of Diff. Eqs., 15:2(1999), 113-126.
Google Scholar
|
[5]
|
M. Han, On Hopf cyclicity of planar systems, J. Math. Anal. Appl., 245(2000), 404-422.
Google Scholar
|
[6]
|
M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.
Google Scholar
|
[7]
|
M. Han and V. Romanovski, On the number of limit cycles of polynomial Lienard systems, Nonlinear Analysis:Real World Applications, 14(2013), 1655-1668.
Google Scholar
|
[8]
|
M. Han, Z. Wang and H. Zang, Limit cycles by Hopf and homoclinic bifurcations for near Hanmil-tonian systems, (Chinese). Chinese Ann. Math. Ser. A 28:5(2007), 679-690; translation in Chinese J. Contemp. Math. 28:4(2007), 423-434.
Google Scholar
|
[9]
|
M. Han, H. Yan, J. Yang and C. Lhotka, On the Number of Limit Cycles of Some Liénard Systems, Can. Appl. Math. Q., 17:1(2009), 61-83.
Google Scholar
|
[10]
|
M. Han, J. Yang, T. Alina and Y. Gao, Limit cycles near Homoclinic and Heteroclinic loops, J. Dyn. Diff. Equat. 2(2008), 923-944.
Google Scholar
|
[11]
|
M. Han, J. Yang and P. Yu, Hopf Bifurcations for near-Hamiltonian Systems, Int. J. Bifurcation and Chaos, 19:12(2009), 4117-4130.
Google Scholar
|
[12]
|
M. Han, H. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Diff. Equat., 245(2008), 1086-1111.
Google Scholar
|
[13]
|
Y. Hou and M. Han, Melnikov functions for planar near-Hamiltonian systems and Hopf bifurcations, J.Shanghai Normal University (Natural Sciences), 35(2006), 1-10.
Google Scholar
|
[14]
|
R. Kazemi and H. R. Z. Zangeneha, Bifurcation of limit cycles in smll pertrrbations of a Hyper-elliptic Hamiltonian system with two nilpotent saddles, J. of Appl. Anal. and Compu., 2:4(2012), 395-413.
Google Scholar
|
[15]
|
N. Lloyd and J. Pearson, Symmetry in planar dynamical systems, J. Symbolic Comput, 33(2002), 357-366.
Google Scholar
|
[16]
|
X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Analysis, 74(2011), 2948-2965.
Google Scholar
|
[17]
|
D. Xiao, Bifurcations on a Five-Parameter Family of planar Vector Field, J. Dyn. Diff. Equat., 20:4(2008), 961-980.
Google Scholar
|
[18]
|
J. Yang, On the limit cycles of a kind of Lienard system with a nilpotent center under perturbations, J. of Appl. Anal. and Compu., 2:3(2012), 325-339.
Google Scholar
|
[19]
|
J. Yang, M. Han and V.G. Romanovski, Limit cycle bifurcations of some Liénard systems, J. Math. Anal. Appl., 366(2010), 242-255.
Google Scholar
|
[20]
|
J. Yang and M. Han, Limit cycle bifurcations of some Linard systems with a nilpotent cusp, Internat. J. Bifur. Chaos, 11(2010) 3829-3839.
Google Scholar
|
[21]
|
J. Yang and M. Han, Limit cycle bifurcations of some Lienard systems with a cuspidal loop and a homoclinic loop, Chaos, Solitons and Fractals, 44(2011), 269-289.
Google Scholar
|
[22]
|
J. Yang and M. Han, Computation of expansion coefficients of Melnikov functions near a nilpotent center, Computers and Mathematics with Applications, 64(2012), 1957-1974.
Google Scholar
|
[23]
|
J. Yang and X. Sun, Bifurcation of limit cycles for some Liénard systems with a nilpotent singular point, to appear in IJBC.
Google Scholar
|
[24]
|
P. Yu and M. Han, Limit cycles in generalized Liénard systems, Chaos, Solitons and Fractals, 30:5(2006), 1048-1068.
Google Scholar
|