2015 Volume 5 Issue 4
Article Contents

Boling Guo, Qiaoxin Li. EXISTENCE OF THE GLOBAL SMOOTH SOLUTION TO A FRACTIONAL NONLINEAR SCHRÖDINGER SYSTEM IN ATOMIC BOSE-EINSTEIN CONDENSATES[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 793-808. doi: 10.11948/2015060
Citation: Boling Guo, Qiaoxin Li. EXISTENCE OF THE GLOBAL SMOOTH SOLUTION TO A FRACTIONAL NONLINEAR SCHRÖDINGER SYSTEM IN ATOMIC BOSE-EINSTEIN CONDENSATES[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 793-808. doi: 10.11948/2015060

EXISTENCE OF THE GLOBAL SMOOTH SOLUTION TO A FRACTIONAL NONLINEAR SCHRÖDINGER SYSTEM IN ATOMIC BOSE-EINSTEIN CONDENSATES

  • In this paper, the fractional nonlinear Schrödinger equations for atomic Bose-Einstein condensates are studied. By using the Galërkin method and a priori estimates, the existence and uniqueness of global smooth solution are obtained.
    MSC: 35K15;35K55
  • 加载中
  • [1] S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation, J. Phys. B, 35(2002).

    Google Scholar

    [2] D. I. Alexandru and P. Fabio, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266(2014), 139-176.

    Google Scholar

    [3] K. C. Alireza, G. AliK and B.Dumitru. On nonlinear fractional Klein-Gordon equation, Signal Processing, 91(2011), 446-451.

    Google Scholar

    [4] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann Inst H Poincaré Anal Non Linéaire, 2(1985), 309-327.

    Google Scholar

    [5] B. L. Guo and Z. H. Huo, Global Well-Posedness for the Fractional Nonlinear Schrödinger Equation, Comm. Partial Differential Equations, 36(2010), 247-255.

    Google Scholar

    [6] B. L. Guo, The global solution for some systems of nonlinear Schrödinger equations, Proc of D-1 Symposium, 3(1980), 1227-1246.

    Google Scholar

    [7] B. L. Guo, The initial and periodic value problem of one class nonlinear Schrödinger equations describing excitons in molecular crystals, Acta Math. Sci., 2(1982), 269-276.

    Google Scholar

    [8] B. L. Guo, The initial value problems and periodic boundary value problem of one class of higher order multi-dimensional nonlinear Schrödinger equations, Chinese Science Bulletin, 6(1982), 324-327.

    Google Scholar

    [9] B. L. Guo, Y. Q. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Applied Mathematics and Computation, 204(2008), 468-477.

    Google Scholar

    [10] B. L. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361(2009), 131-138.

    Google Scholar

    [11] J. Hu, J. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62(2011), 1510-1521.

    Google Scholar

    [12] X. K. Pu and B. L. Guo, Existence and decay of solutions to the twodimensional fractional quasigeostrophic equation, J. Math. Phys., 51(2010), 1-15.

    Google Scholar

    [13] X. K. Pu, B. L. Guo and J. J. Zhang, Global weak solutions to the 1-d fractional Landau-Lifshitz equation, Discret. Contin. Dyn. Syst.Ser. B, 14(2010), 199-207.

    Google Scholar

    [14] X. K. Pu and B. L. Guo, The fractional Landau-Lifshitz-Gilbert equation and the heat flow of harmonic maps, Calculus of Variations, 42(2011), 1-19.

    Google Scholar

    [15] S. Z. Rida, H. M. El-Sherbiny and A. A. M. Arafa, On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett. A, 372(2008).

    Google Scholar

    [16] X. D. Shang and J. H. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27(2014), 187-207.

    Google Scholar

    [17] E. Timmermans, P. Tommasini, M. Hussein and A. Kerman, Feshbach resonances in atomic Bose-Einstein condensates, Physics Reports, 315(1999), 199-230.

    Google Scholar

    [18] Y. Zhou and B. L. Guo, Periodic boundary problem and initial value problem for the generalized Korteweg-de Vries systems of higher order, Acta Math. Sci., 27(1984), 154-176.

    Google Scholar

Article Metrics

Article views(2158) PDF downloads(920) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint