[1]
|
R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., 21(1993), 1329-1371.
Google Scholar
|
[2]
|
F. Boesch and Z.R. Bogdanowicz, The number of spanning trees in a prism, Int. J. Comput. Math., 21(1987), 229-243.
Google Scholar
|
[3]
|
F. Comellas, A. Miralles, H.X. Liu and Z.Z. Zhang, The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs, Phys. A, 392(2013), 2803-2806.
Google Scholar
|
[4]
|
S.C. Chang, L.C. Chen and W.S. Yang, Spanning trees on the Sierpinski gasket, J. Stat. Phys., 126(2007), 649-667.
Google Scholar
|
[5]
|
D. Dhar and A. Dhar, Distribution of sizes of erased loops for loop-erased random walks, Phys. Rev. E, 55(1997), 2093-2096.
Google Scholar
|
[6]
|
D. D'Angeli and A. Donno, Weighted spanning trees on some self-similar graphs, Electron. J. Comb., 18(2011), 16-43.
Google Scholar
|
[7]
|
Q.Y. Ding, W.G. Sun and F.Y. Chen, Applcations of laplcian spectra on a 3-prism graph, Mod. Phys. Lett. B, 28(2014), 1450009.
Google Scholar
|
[8]
|
R. Frucht, J.E. Graver and M.E. Watkins, The groups of the generalized Petersen graphs, Proc. Cambridge Philos. Soc., 70(1971), 211-218.
Google Scholar
|
[9]
|
K.I. Goh, G. Salvi, B. Kahng and D. Kim, Skeleton and fractal scaling in complex networks, Phys. Rev. Lett., 96(2006), 018701.
Google Scholar
|
[10]
|
G. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
Google Scholar
|
[11]
|
J.S. Kim, K.I. Goh, G. Salvi, E. Oh, B. Kahng and D. Kim, Fractality in complex networks:Critical and supercritical skeletons, Phys. Rev. E, 75(2007), 016110.
Google Scholar
|
[12]
|
R. Lyons, Asymptotic enumeration of spanning Trees, Combin. Probab. Comput., 14(2005), 491-522.
Google Scholar
|
[13]
|
Y. Lin, B. Wu, Z.Z. Zhang and G.R. Chen, Counting spanning trees in selfsimilar networks by evaluating determinants, J. Math. Phys., 52(2011), 113303.
Google Scholar
|
[14]
|
S.N. Majumdar and D. Dhar, Equivalence between the Abelian sandpile model and the q ! 0 limit of the Potts model, Phys. A, 185(1992), 129-145.
Google Scholar
|
[15]
|
J.D. Noh and H. Rieger, Random walks on complex networks, Phys. Rev. Lett., 92(2004), 118701.
Google Scholar
|
[16]
|
S.D. Nikolopoulos and C. Papadopoulos, The number of spanning trees in Kncomplements of quasi-threshold graphs, Graph Combinator, 20(2004), 383-397.
Google Scholar
|
[17]
|
R.M. Ramos, S. Alonso, J. Sicilia and C. Gonzlez, The problem of the optimal biobjective spanning tree, Eur. J. Oper. Res., 111(1998), 617-628.
Google Scholar
|
[18]
|
R. Shrock, F.Y. Wu, J, Spanning trees on graphs and lattices in d-dimensions, J. Phys. A, 33(2000), 3881-3902.
Google Scholar
|
[19]
|
W.J. Tseng and F.Y. Wu, Dimers on a simple-quartic net with a vacancy, J. Stat. Phys., 110(2003), 671-689.
Google Scholar
|
[20]
|
E. Teufl and S. Wagner, The number of spanning trees in self-similar graphs, Ann. Comb., 15(2011), 355-380.
Google Scholar
|
[21]
|
E. Teufl and S. Wagner, Determinant identities for Laplace matrices, Linear Algebra Appl., 432(2010), 441-457.
Google Scholar
|
[22]
|
E. Teufl and S. Wagner, On the number of spanning trees on various lattices, J. Phys. A, 43(2010), 415001.
Google Scholar
|
[23]
|
F.Y. Wu,The Potts model, Rev. Mod. Phys., 54(1982), 235-268.
Google Scholar
|
[24]
|
B.Y. Wu and K.M. Chao, Spanning Trees and Optimization Problems, Chapman & Hall, FL, 2004.
Google Scholar
|
[25]
|
Y.Z. Xiao, H.X. Zhao, G.N. Hu and X.J. Ma, Enumeration of spanning trees in planar unclustered networks, Phys. A, 406(2014), 236-243.
Google Scholar
|
[26]
|
Z.Z. Zhang, X.H. Lin, B. Wu and T. Zou, Spanning trees in a fractal scale-free lattice, Phys. Rev. E, 83(2011), 016116.
Google Scholar
|
[27]
|
Z.Z. Zhang, B. Wu and F. Comellas, The number of spanning trees in Apollonian networks, Discrete Appl. Math., 169(2014), 206-213.
Google Scholar
|
[28]
|
J.Y. Zhang, W.G. Sun and G.H. Xu, Enumeration of spanning trees on Apollonian networks, J. Stat. Mech., 9(2013), P09015.
Google Scholar
|