[1]
|
O. Abdulaziz, A. Bataineh and I. Hashim, On convergence of homotopy analysis method and its modification for fractional modified KdV equations, J. Appl. Math. Comput., 33(2010), 61-81.
Google Scholar
|
[2]
|
A. Alomari, M. Noorani, R. Nazar and C. Li, Homotopy analysis method for solving fractional Lorenz system, Commun. Nonlinear Sci., 15(2010), 1864-1872.
Google Scholar
|
[3]
|
S. Abbas, M. Banerjee and S. Momani, Dynamical analysis of fractional-order modified logistic model, Comput. Math. Appl., 62(2011), 1098-1104.
Google Scholar
|
[4]
|
K. Diethelm, The Analysis of Fractional Differential Equations, Springer Press, New York, 2010.
Google Scholar
|
[5]
|
K. Diethelm, N. Ford and A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equation, Nonlinear Dynam., 29(2002), 3-22.
Google Scholar
|
[6]
|
T. Fan and X. You, Optimal homotopy analysis method for nonlinear differential equations in the boundary layer, Numer. Algorithms, 62(2013), 337-354.
Google Scholar
|
[7]
|
J. Fan and B. Yang, The mean value theorem for multiple integral, Math. Pract. Theory, 37(2007), 197-200. (in Chinese)
Google Scholar
|
[8]
|
I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14(2009), 674-684.
Google Scholar
|
[9]
|
J. Izadian, M. MohammadzadeAttar and M. Jalili, Numerical solution of deformation equations in homotopy analysis method, Appl. Math. Sci., 6(2012), 357-367.
Google Scholar
|
[10]
|
H. Jafari, K. Sayevand, H. Tajadodi and D. Baleanu, Homotopy analysis method for solving Abel differential equation of fractional order, Cent. Eur. J. Phys., 11(2013), 1523-1527.
Google Scholar
|
[11]
|
H. Jafari, H. Tajadodi and D. Baleanu, A modified variational iteration method for solving fractional riccati differential equation by adomian polynomials, Fract. Calc. Appl. Anal., 16(2013), 109-122.
Google Scholar
|
[12]
|
A. Kilbas, H.Srivastava and J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier Science, Netherlands, 2006.
Google Scholar
|
[13]
|
J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings IEEE International Conference on Neural Networks, 4(1995), 1942-1948.
Google Scholar
|
[14]
|
J. Kennedy, R. Eberhart and Y. Shi, Swarm Intelligence, CA:Morgan Kaufman, San Francisco, 2001.
Google Scholar
|
[15]
|
S. Liao, Beyond perturbation:introduction to the homotopy analysis method, Chapman&Hall/CRC Press, Boca Raton, 2003.
Google Scholar
|
[16]
|
S. Liao, Homotopy analysis method in nonlinear differential equations, Higher Education Press, Beijing, 2012.
Google Scholar
|
[17]
|
S. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci., 15(2010), 2003-2016.
Google Scholar
|
[18]
|
S. Liao, An explicit, totally analytic approximation of Blasius viscous flow problems, Int. J. Nonlin. Mech., 34(1999), 759-778.
Google Scholar
|
[19]
|
Y. Liu, Z. Li and Y. Zhang, Homotopy perturbatioin method to fractional biological population equation, Fract. Diff. Calc., 1(2011), 117-124.
Google Scholar
|
[20]
|
V. Marinca, N. Herisanu and I. Nemes, Optimal homotopy asymptotic method with application to thin film flow, Cent. Eur. J. Phys., 6(2008), 648-653.
Google Scholar
|
[21]
|
V. Marinca and N. Herisanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass, 35(2008), 710-715.
Google Scholar
|
[22]
|
V. Marinca and N. Herisanu, An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl. Math. Lett., 22(2009), 245-251.
Google Scholar
|
[23]
|
M. Mohamed, Application of optimal HAM for solving the fractional order logistic equation, Appl. Comput. Math., 3(2014), 27-31.
Google Scholar
|
[24]
|
Z. Niu and C. Wang, A one-step optimal homotopy analysis method for nonlinear differential equations, Commun. Nonlinear Sci., 15(2008), 2026-2036.
Google Scholar
|
[25]
|
Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl., 61(2011), 2330-2341.
Google Scholar
|
[26]
|
Z. Odibat and S. Momani, Modified homotopy perturbation method:application to quadratic Riccati differential equation of fractional order, Chaos, Soliton Fract., 36(2008), 167-174.
Google Scholar
|
[27]
|
N. Shaheed and R.Said, Approximate solutions of nonlinear partial differential equations by modified-homotopy analysis method, J. Appl. Math., (2013). DOI:10.1155/2013/569674.
Google Scholar
|
[28]
|
N. Saberi and S. Shateyi, Application of Optimal HAM for finding feedback control of optimal control problems, Math. Probl. Eng., (2013). DOI:10.1155/2013/914741.
Google Scholar
|
[29]
|
N. Sweilam, M. Khader and A. Mahdy, Numerical studies for solving fractionalorder logistic equation, Int. J. Pure Appl. Math., 78(2012), 1199-1210.
Google Scholar
|
[30]
|
V. Uchaikin, Fractional Derivatives for Physicits and Engineers, Higher Educatioin Press, Beijin, 2013.
Google Scholar
|
[31]
|
Y. Wu and K. Cheung, Homotopy solution for nonlinear differential equations in wave propagation problems, Wave Motion, 46(2009), 1-14.
Google Scholar
|
[32]
|
K. Yabushita, M. Yamashita and K. Tsuboi, An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A:Math. Theor., 40(2007), 8403-8416.
Google Scholar
|
[33]
|
L. Yuan, Q. Yang and C. Zeng, Chaos detection and parameter identification in fractional-order chaotic systems with delay, Nonlinear Dynam., 73(2013), 439-448.
Google Scholar
|
[34]
|
X. Zhou, C. Yang, W. Gui and T. Dong, A particle swarm optimization algorithm with variable random functions and mutation, Acta Automatica Sinica, 40(2014), 1339-1347.
Google Scholar
|