[1]
|
M. F. Abad, A. Cordero and J. R. Torregrosa, Fourth-and fifth-order methods for solving nonlinear systems of equations:An application to the global positioning system, Abstract and Applied Analysis, (2013). DOI:10.1155/2013/586708.
Google Scholar
|
[2]
|
S. Amat, H. M. A. and N. Romero, On a family of high-order iterative methods under gamma conditions with applications in denoising, Numerische Mathematik, 127(2014), 201-221.
Google Scholar
|
[3]
|
C. Andreu, N. Cambil, A. Cordero and J. R. Torregrosa, A class of optimal eighth-order derivative-free methods for solving the danchick-gauss problem, Applied Mathematics and Computation, 232(2012), 237-246.
Google Scholar
|
[4]
|
V. Arroyo, A. Cordero and J. R. Torregrosa, Approximation of artificial satellites' preliminary orbits:The efficiency challenge, Mathematical and Computer Modelling, 54(2011), 1802-1807.
Google Scholar
|
[5]
|
M. A. Hafiz and M. S. M. Bahgat, Solving nonsmooth equations using family of derivative-free optimal methods, Journal of the Egyptian Mathematical Society, 21(2013), 38-43.
Google Scholar
|
[6]
|
H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, Journal of the Association for Computing Machinery, 21(1974), 643-651.
Google Scholar
|
[7]
|
T. Lofti, K. Mahdiani, Z. Noori et al., On a new three-step class of methods and its acceleration for nonlinear equations, The Scientific World Journal, (2014). DOI:10.1155/2014/134673.
Google Scholar
|
[8]
|
T. Lotfi, F. Soleymani, M. Ghorbanzadeh and P. Assari, On the construction of some tri-parametric iterative methods with memory, Numerical Algorithm, (2015). DOI:10.1007/s11075-015-9976-7.
Google Scholar
|
[9]
|
T. Lotfi and E. Tavakoli, On a new efficient steffensen-like iterative class by applying a suitable self-accelerator parameter, The Scientific World Journal, (2014). DOI:10.1155/2014/769758.
Google Scholar
|
[10]
|
Z. Lui and Q. Zheng, A one-step steffensen-type method with super-cubic convergence for solving nonlinear equation, Procedia Computer Science, 29(2014), 1870-1875.
Google Scholar
|
[11]
|
J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.
Google Scholar
|
[12]
|
A. M. Owtrowski, Solution of equations and systems of equations, Academic Press, New York, 1960.
Google Scholar
|
[13]
|
J. R. Sharma and H. Arora, On efficient weighted-newton methods for solving systems of nonlinear equations, Applied Mathematics and Computation, 222(2013), 497-506.
Google Scholar
|
[14]
|
F. Soleymani, Some optimal iterative methods and their with memory variants, Journal of the Egyptian Mathematical Society, 21(2013), 133-141.
Google Scholar
|
[15]
|
F. Soleymani, T. Lotfi and P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems, Optimization Letters, 8(2014), 1001-1015.
Google Scholar
|
[16]
|
F. Soleymani, T. Lotfi, E. Tavakoli and F. K. Haghani, Several iterative methods with memory using self-accelerators, Applied Mathematics and Computation, 254(2015), 452-458.
Google Scholar
|
[17]
|
J. F. Traub, Iterative methods for the solution of equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
Google Scholar
|