[1]
|
T. Ahn and A. Sandu, Implicit simulation methods for stochastic chemical kinetics, (2013). Http://arxiv.org/abs/1303.3614.
Google Scholar
|
[2]
|
A. Altaleb and D. Chauveau, Bayesian analysis of the logit model and comparison of two metropolis-hastings strategies., Comput. Stat. Data Anal, 39(2002)(2), 137-152.
Google Scholar
|
[3]
|
Y. Cao, R. Petzold, M.Rathinam and D. Gillespie, The numerical stability of leaping methods for stochastic simulation of chemically reacting systems., Journal of Chemical Physics, 121(2004)(24), 12169-12178.
Google Scholar
|
[4]
|
A. Carpenter, A. Ruttan and R. Varga, Extended numerical computations on the 1/9 conjecture in rational approximation theory., Rational approximation and interpolation in lecture notes in mathematics, Springer., (1984)(1105), 383-411.
Google Scholar
|
[5]
|
S. Chib and E. Greenberg, Understanding the metropolis-hastings algorithm., The American Statistician., 49(1995)(4), 327-335.
Google Scholar
|
[6]
|
D. Gillespie, Exact stochastic simulation of coupled chemical reactions, Journal of Chemical Physics, 81(1977)(25), 2340-2361.
Google Scholar
|
[7]
|
D. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, Journal of Chemical Physics, 115(2001)(4), 1716-1733.
Google Scholar
|
[8]
|
D. Gillespie and L. Petzold, Improved leap-size selection for accelerated stochastic simulation, Journal of Chemical Physics, 119(2003)(16), 8229-8234.
Google Scholar
|
[9]
|
W. Hastings, Monte carlo sampling methods using markov chains and their applications, Biometrika, 57(1970).
Google Scholar
|
[10]
|
N. J. Higham, The scaling and squaring method for the matrix exponential revisited., SIAM review., 51(2009)(4), 747-764.
Google Scholar
|
[11]
|
D. Hitchcock, A history of the metropolis-hastings algorithm, The American Statistician, 75(2003)(4), 254-257.
Google Scholar
|
[12]
|
C. Kastner, A. Braumann, L. Man et al., Bayesian parameter estimation for a jet-milling model using metropolishastings and wanglandau sampling, Chemical Engineering Science., 99(2013)(4), 244-257.
Google Scholar
|
[13]
|
T. Kurtz, The relationship between stochastic and deterministic models for chemical reactions., Journal of Chemical Physics, 57(1972)(7), 2976-2978.
Google Scholar
|
[14]
|
N. Metropolis, A. Rosenbluth, M. Rosenbluth et al., Equations of state calculations by fast computing machine, Journal of Chemical Physics, (1953)(21), 1087-1091.
Google Scholar
|
[15]
|
C. Moler and C. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45(2003)(1).
Google Scholar
|
[16]
|
A. Mooasvi and A. Sandu, Approximate exponential algorithms to solve the chemical master equation, Mathematical Modelling and Analysis, 20(2015)(3), 382-395.
Google Scholar
|
[17]
|
M. Pusa, Rational approximations to the matrix exponential in burn up calculations., Nuclear science and engineering., 169(2010)(2), 155-167.
Google Scholar
|
[18]
|
M. Rathinam, L. Petzold, Y.Cao and D.Gillespie, Stiffness in stochastic chemically reacting systems:The implicit tau-leaping method, Journal of Chemical Physics, 119(2003), 784-12.
Google Scholar
|
[19]
|
G. O. Roberts and A. F. M. Smith, Simple conditions for the convergence of the gibbs sampler and metropolis-hastings algorithms., Stochastic Processes and their Applications, 49(1994)(2), 207-216.
Google Scholar
|
[20]
|
A. Sandu, A new look at chemical master equation, Numerical Algorithms, 65(2013)(3), 485-498.
Google Scholar
|
[21]
|
R. Sidje, Expokit:A software package for computing matrix exponentials., ACM Trans. Software., 24(1998)(1), 130-156.
Google Scholar
|