2016 Volume 6 Issue 2
Article Contents

Changfu Liu, Min Chen, Ping Zhou, Longwei Chen. BI-SOLITONS, BREATHER SOLUTION FAMILY AND ROGUE WAVES FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 367-375. doi: 10.11948/2016028
Citation: Changfu Liu, Min Chen, Ping Zhou, Longwei Chen. BI-SOLITONS, BREATHER SOLUTION FAMILY AND ROGUE WAVES FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 367-375. doi: 10.11948/2016028

BI-SOLITONS, BREATHER SOLUTION FAMILY AND ROGUE WAVES FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION

  • Fund Project:
  • In this paper, bi-solitons, breather solution family and rogue waves for the (2+1)-Dimensional nonlinear Schrödinger equations are obtained by using Exp-function method. These solutions derived from one unified formula which is solution of the standard (1+1) dimension nonlinear Schrödinger equation. Further, based on the solution obtained by other authors, higher-order rational rogue wave solution are obtained by using the similarity transformation. These results greatly enriched the diversity of wave structures for the (2+1)-dimensional nonlinear Schrödinger equations.
    MSC: 35Q55;35A20;35A25;35C08
  • 加载中
  • [1] N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo, Rogue waves and rational solutions of the nonlinear Schrödinger equation, Phys. Rev. E, 80(2009), 026601.

    Google Scholar

    [2] N. Akhmediev, A. Ankiewicz and M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373(2009), 675-678.

    Google Scholar

    [3] N. Akhmediev, J.M. Soto-Crespo and A. Ankiewicz, Extreme waves that appear from nowhere:on the nature of rogue waves, Phys. Lett. A, 373(2009), 2137-2145.

    Google Scholar

    [4] Yu. V. Bludov, V. V. Konotop and N. Akhmediev, Matter rogue waves, Phys. Rev. A, 80(2009), 033610, 5 pages.

    Google Scholar

    [5] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite and Jorge R. Tredicce, Deterministic optical rogue waves, Phys. Rev. Lett., 107(2011), 053901, 5pages.

    Google Scholar

    [6] A. Chabchoub, N. P. Hoffmann and N. Akhmediev, Rogue waves observation in a water wave tank, Phys. Rev. Lett., 106(2011), 204502, 4pages.

    Google Scholar

    [7] V.B. Efimov, A.N. Ganshin, G.V. Kolmakov, P.V.E. McClintock and L.P. Mezhov-Deglin, Rogue waves in superfluid helium, Eur. Phys. J. Special Topics, 185(2010), 181-193.

    Google Scholar

    [8] L. P. Faddeev and L. A. Takhtajan, Formulation of nonlinear NLS modul, hamiltonian methods in the theory of solitons, Springer-Verlag, Berlin, 1987.

    Google Scholar

    [9] F. Fedele, Rogue waves in oceanic turbulence, Physica D, 237(2008), 2127-2131.

    Google Scholar

    [10] B. L. Guo and L. M. Ling, Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations, Chinese Phys. Lett., 28(2011), 110202, 5 pages.

    Google Scholar

    [11] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30(2006), 700-708.

    Google Scholar

    [12] K. L. Henderson, D. H. Peregrine and J. W. Dold, Unsteady water wave modulations:fully nonlinear solutions and comparison with the nonlinear Schrödinger equation, Wave Motion, 29(1999), 341-361.

    Google Scholar

    [13] C.F. Liu, C.J. Wang, Z.D. Dai and J. Liu, New rational homoclinic and rogue waves for Davey-Stewartson equation, Abstract and Applied Analysis, (2014). DOI:10.1155/2014/572863.

    Google Scholar

    [14] Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60(1979), 43-58.

    Google Scholar

    [15] Z. Y. Ma and S. H. Ma, Analytical solutions and rogue waves in (3+1)-Dimensional nonlinear Schrödinger equation, Chin. Phys. B, 21(2012), 030507, 7 pages.

    Google Scholar

    [16] P. Mller, C. Garrett and A. Osborne, Meeting reportrogue waves(The Fourteenth ‘Aha Huliko’ a Hawaiian Winter Workshop), Oceanography, 18(2005), 66-75.

    Google Scholar

    [17] W. M. Moslem, P. K. Shukla and B. Eliasson, Surface plasma rogue waves, EPL, 96(2011), 25002, 5 pages.

    Google Scholar

    [18] D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. Ser. B:Appl. Math., 25(1983),16-43.

    Google Scholar

    [19] R. Radha and M. Lakshmanan, Singularity structure analysis and bilinear form of a (2+1)-dimensional nonlinear NLS equation, Inverse Problems, 10(1994), 29-32.

    Google Scholar

    [20] M. Shats, H. Punzmann and H. Xia, Capillary rogue waves, Phys. Rev. Lett., 104(2010), 104503, 4 pages.

    Google Scholar

    [21] S. F. Shen, J. Zhang and Z. L. Pan, Multi-linear variable separation approach to solve a (2+1)-dimensional generalization of nonlinear Schrödinger system, Commun. Theor. Phys.(Beijing, China), 43(2005), 965-968.

    Google Scholar

    [22] D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Optical rogue waves, Nature, 450(2007), 1054-1057.

    Google Scholar

    [23] I. A. B. Strachan, Wave solutions of a (2+1)-dimensional generalization of the nonlinear Schrödinger equation, Inverse Problems, 8(1992), 21-27.

    Google Scholar

    [24] S. Vergeles and S. K. Turitsyn, Optical rogue waves in telecommunication data streams, Phys. Rev. A, 83(2011), 061801(R), 13 pages.

    Google Scholar

    [25] C.J. Wang, Z.D. Dai, Various breathers and rogue waves for the coupled longwave-short-wave system, Advances in Difference Equations, 1(2014), 87-96.

    Google Scholar

    [26] Y. Y. Wang, J. S. He and Y. S. Li, Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation, Commun. Theor. Phys.(Beijing, China), 56(2011), 995-1004.

    Google Scholar

    [27] X. C. Wang, J. S. He and Y. S. Li, Rogue wave with a controllable center of nonlinear Schrödinger equation, Commun. Theor. Phys.(Beijing, China), 56(2011), 631-637.

    Google Scholar

    [28] Z. Y. Yan, Financial rogue waves, Commun. Theor. Phys. (Beijing, China), 54(2010), 947-949.

    Google Scholar

    [29] A. Zaviyalov, O. Egorov, R. Iliew and F. Lederer, Rogue waves in mode-locked fiber lasers, Phys. Rev. A, 85(2012), 013828, 6 pages.

    Google Scholar

    [30] J.F. Zhang, M.Z. Jin, J.D. He, J.H. Lou and C.Q. Dai, Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides, Chin. Phys. B, 22(2013), 054208.

    Google Scholar

Article Metrics

Article views(2623) PDF downloads(845) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint