2016 Volume 6 Issue 2
Article Contents

Yi-Ling Cang, Jin-Lin Liu. CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 396-408. doi: 10.11948/2016030
Citation: Yi-Ling Cang, Jin-Lin Liu. CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 396-408. doi: 10.11948/2016030

CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

  • Fund Project:
  • The authors introduce two new subclasses of analytic functions. The object of the present paper is to investigate some convolution properties of functions in these subclasses.
    MSC: 30C45;30C55
  • 加载中
  • [1] M. K. Aouf, J. Dziok and J. Sokol, On a subclass of strongly starlike functions, Appl. Math. Lett., 24(2011), 27-32.

    Google Scholar

    [2] N. E. Cho, O. S. Kwon and S. Owa, Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math., 17(1993), 121-126.

    Google Scholar

    [3] J. Dziok and J. Sokol, Some inclusion properties of certain class of analytic functions, Taiwanese J. Math., 13(2009), 2001-2009.

    Google Scholar

    [4] J. Dziok, R. K. Raina and J. Sokol, On alpha-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., 218(2011), 966-1002.

    Google Scholar

    [5] S. A. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci., 14(1991), 451-456.

    Google Scholar

    [6] U. Leonhardt, Optical conformal mapping, Science, 312(2006), 1777-1780.

    Google Scholar

    [7] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Modelling, 57(2013), 945-962.

    Google Scholar

    [8] K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28(2014)(7), 1493-1503.

    Google Scholar

    [9] M. Obradovic and S. Ponnusamy, Radius of univalence of certain class of analytic functions, Filomat, 27(2013)(6), 1085-1090.

    Google Scholar

    [10] R. Pavatham and S. Radha, On α-starlike and α-close-to-convex functions with respect to n-symmetric points, Indina J. Pure Appl. Math., 16(1986), 1114-1122.

    Google Scholar

    [11] J. B. Pendry, D. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312(2006), 1780-1782.

    Google Scholar

    [12] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc.Japan, 11(1959), 72-75.

    Google Scholar

    [13] J. Sokol, A certain class of starlike functions, Comput. Math. Appl., 62(2011), 611-619.

    Google Scholar

    [14] H. M. Srivastava, D.-G. Yang and N-E. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput., 195(2008), 11-23.

    Google Scholar

    [15] J. Stantiewics, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Mariae Curie-Sklodowska, 19(1965), 53-59.

    Google Scholar

    [16] H. Tang, H. M. Srivastava, S.-H. Li and L.-N. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstr. Appl. Anal., 2014(2014), 1-11.

    Google Scholar

    [17] H. Tang, G. Deng, J. Sokol and S. Li, Inclusion and argument properties for the Srivastava-Khairnar-More operator, Filomat, 28(2014)(8), 1603-1618.

    Google Scholar

    [18] Z.-G. Wang, H. M. Srivastava and S.-M. Yuan, Some basic properties of certain subclasses of meromorphically starlike functions, J. Inequal. Appl., 2014(2014), 1-12.

    Google Scholar

    [19] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl., 322(2006), 97-106.

    Google Scholar

    [20] Z. Wu, On classes of Sakaguchi functions and Hadamard products, Sci. Sinica Ser., A30(1987), 128-135.

    Google Scholar

    [21] N-E. Xu and D.-G. Yang, Some classes of analytic and multivalent functions involving a linear operator, Math. Comput. Modelling, 49(2009), 955-965.

    Google Scholar

    [22] Q.-H. Xu, C.-B. Lv, N.-C. Luo and H. M. Srivastava, Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat, 27(2013)(7), 1351-1356.

    Google Scholar

    [23] D.-G. Yang and J.-L. Liu, Some subclasses of meromorphic and multivalent functions, Ann. Polon. Math., 111(2014), 73-88.

    Google Scholar

    [24] D.-G. Yang and J.-L. Liu, Certain subclasses of meromorphically multivalent functions, Houston J. Math., 40(2014), 527-554.

    Google Scholar

    [25] S.-M. Yuan and Z.-M. Liu, Some properties of α-convex and α-quasiconvex functions with respect to n-symmetric points, Appl. Math. Comput., 188(2007), 1142-1150.

    Google Scholar

Article Metrics

Article views(2376) PDF downloads(1016) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint