[1]
|
L. Arnold, Stochastic Differential Equations:theory and applications, New York, 1974.
Google Scholar
|
[2]
|
L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, vol. 1926, Springer, 2008.
Google Scholar
|
[3]
|
W. A. Coppel, Dichotomy in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, New York/Berlin, 1978.
Google Scholar
|
[4]
|
J. M. DeLaurentis and B. A. Boughton, An asymptotic analysis of a generalized Langevin equation, Stochastic Process. Appl., 33(1989), 275-284.
Google Scholar
|
[5]
|
L. C. Evans, An Introduction to Stochastic Differential Equations, Amer. Math. Soc., 2012.
Google Scholar
|
[6]
|
A. Friedman, Stochastic differential equations and applications, Stochastic differential equations, 75-148, C.I.M.E. Summer Sch. 77, Springer, Heidelberg, 2010.
Google Scholar
|
[7]
|
E. Hairer and G. Wanner, Solving Ordinary Differential Equations Ⅱ, Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.
Google Scholar
|
[8]
|
D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numerical Anal., 38(2000), 753-769.
Google Scholar
|
[9]
|
D. J. Higham,An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43(2001), 525-546.
Google Scholar
|
[10]
|
D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40(2002), 1041-1063
Google Scholar
|
[11]
|
D. J. Higham, X. Mao and A. M. Stuart, Exponential mean-square stability of numerical solutions to stochastic differential equations, LMS J. Comput. Math., 6(2003), 297-313.
Google Scholar
|
[12]
|
D. J. Higham, X. Mao and C. G. Yuan, Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equations, Numer. Math., 108(2007), 295-325.
Google Scholar
|
[13]
|
P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253(2012), 1422-1438.
Google Scholar
|
[14]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
Google Scholar
|
[15]
|
X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
Google Scholar
|
[16]
|
J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, in:Pure and Applied Mathematics, vol. 21, Academic Press, 1966.
Google Scholar
|
[17]
|
O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32(1930), 703-728.
Google Scholar
|
[18]
|
Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33(1996), 2254-2267.
Google Scholar
|
[19]
|
H. Schurz, Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise, Stochastic Anal. Appl., 14(1996), 313-354.
Google Scholar
|
[20]
|
D. Stoica, Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl., 120(2010), 1920-1928.
Google Scholar
|
[21]
|
D. Stoica and M. Megan, On nonuniform dichotomy for stochastic skewevolution semiflows in Hilbert spaces, Czechoslovak Math. J., 62(2012)(137), 879-887
Google Scholar
|