[1]
|
X. Cheng and W. Abdul, Analysis of the iterative penalty method for the Stokes equations, Appl. Math. Lett., 19(2006)(10), 1024-1028.
Google Scholar
|
[2]
|
X. Dai, P. Tang and M. Wu, Analysis of an iterative penalty method for NavierCStokes equations with nonlinear slip boundary conditions, Int. J. Numer. Meth. Fluids, 72(2013)(4), 403-413.
Google Scholar
|
[3]
|
L. Franca and T. Hughes, Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 105(1993)(2), 85-298.
Google Scholar
|
[4]
|
L. Franca, S. Frey and A. Madureira, Two-and three-dimensional simulations of the incompressible NavierCStokes equations based on stabilized methods, Comput Fluid Dyn, 94(1994), 121-128.
Google Scholar
|
[5]
|
L. Franca and A. Russo, Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Appl. Math. Lett., 9(1996)(5), 83-88.
Google Scholar
|
[6]
|
L. Franca and A. Nesliturk, On a two-level finite element method for the incompressible Navier-Stokes equations, Int J Numer Methods Eng, 52(2001)(4), 433-453.
Google Scholar
|
[7]
|
U. Ghia, K. Ghia and C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48(1982), 387-411.
Google Scholar
|
[8]
|
V. Girault and P. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin Heidelberg, 2008.
Google Scholar
|
[9]
|
J. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, Math Model Numer Anal, 33(1999)(6), 1293-1316.
Google Scholar
|
[10]
|
F. Hecht, New development in FreeFem++, J. Numer. Math., 20(2012)(3-4), 251-265.
Google Scholar
|
[11]
|
T. Hughes, L. Franca and G. Hulbert, A new finite element formulation for computational fluid dynamics, VⅢ, the Galerkin/least-squares method for advective-diffusive equations, Comput Methods Appl Mech Eng, 73(1989)(2), 173-189.
Google Scholar
|
[12]
|
T. Hughes, L. Mazzei and K. Jansen, Large eddy simulation and the variational multiscale method, Comput Vis Sci, 3(2000)(1-2), 47-59.
Google Scholar
|
[13]
|
T. Hughes, L. Mazzei and A. Oberai, The multiscale formulation of large eddy simulation:Decay of homogeneous isotropic turbulence, Phys Fluids, 13(2001)(2), 505-511.
Google Scholar
|
[14]
|
V. John, Large eddy simulation of turbulent incompressible flows, analytical and numerical results for a class of les models, Springer-Verlag, Berlin, 2004.
Google Scholar
|
[15]
|
V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput., 26(2005)(5), 1485-1503.
Google Scholar
|
[16]
|
S. Kaya, W. Layton and B. Riviere, Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 44(2006)(4), 1639-1654.
Google Scholar
|
[17]
|
W. Layton, Solution algorithm for incompressible viscous flows at high Reynolds number, Vestnik Moskov. Gos. Univ. Ser., 15(1996), 25-35.
Google Scholar
|
[18]
|
W. Layton, A connection between subgrid scale eddy viscosity and mixed methods, Appl Math Comput, 133(2002)(1), 147-157.
Google Scholar
|
[19]
|
W. Layton, H. Lee and J. Peterson, A defect-correction method for the incompressible NavierCStokes equations, Applied Mathematics and Computation, 129(2002)(1), 1-19.
Google Scholar
|
[20]
|
Y. Li and R. An, Two-Level Iteration Penalty Methods for Navier-Stokes Equations with Friction Boundary Conditions, Abstract and Applied Analysis, 2013, Article ID 125139, 17 pages.
Google Scholar
|
[21]
|
Y. Li, L. Mei, Y. Li and K. Zhao, A two-level variational multiscale method for incompressible flows based on two local Gauss integrations, Numer. Meth. Par. Diff. Equa., 29(2013)(6), 1986-2003.
Google Scholar
|
[22]
|
Q. Liu and Y. Hou, A two-level defect-correction method for Navier-Stokes equations, Bull. Aust. Math. Soc., 81(2010)(3), 442-454.
Google Scholar
|
[23]
|
P. Sagaut, Large eddy simulation for incompressible flows, Springer, Berlin Heidelberg, 2003.
Google Scholar
|
[24]
|
J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations, SIAM Numer. Anal., 321995(2), 386-403.
Google Scholar
|
[25]
|
R. Temam, Navier-Stokes equations:theory and numerical analysis, AMS Chelsea Publishing, 2001.
Google Scholar
|
[26]
|
J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15(1994), 231-237.
Google Scholar
|
[27]
|
J. Xu, Two-grid discretization techniques for linear and nonlinear PEDs, SIAM J. Numer. Anal., 33(1996)(5), 1759-1777.
Google Scholar
|
[28]
|
H. Zheng, Y. Hou, F. Shi and L. Song, A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J Comput Phys, 228(2009)(16), 5961-5977.
Google Scholar
|
[29]
|
H. Zheng, Y. Hou and F. Shi, Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations, J Comput Phys, 229(2010)(19), 7030-7041.
Google Scholar
|