2016 Volume 6 Issue 3
Article Contents

Sema Kazan, Bayram Ṣahin. PSEUDOSYMMETRIC LIGHTLIKE HYPERSURFACES IN INDEFINITE SASAKIAN SPACE FORMS[J]. Journal of Applied Analysis & Computation, 2016, 6(3): 699-719. doi: 10.11948/2016046
Citation: Sema Kazan, Bayram Ṣahin. PSEUDOSYMMETRIC LIGHTLIKE HYPERSURFACES IN INDEFINITE SASAKIAN SPACE FORMS[J]. Journal of Applied Analysis & Computation, 2016, 6(3): 699-719. doi: 10.11948/2016046

PSEUDOSYMMETRIC LIGHTLIKE HYPERSURFACES IN INDEFINITE SASAKIAN SPACE FORMS

  • We study pseudosymmetric lightlike hypersurfaces of an indefinite Sasakian space form, tangent to the structure vector field. We obtain sufficient conditions for a lightlike hypersurface to be pseudosymmetric, pseudoparallel and Ricci-pseudosymmetric in an indefinite Sasakian space form. We also find certain conditions for a pseudosymmetric lightlike hypersurface of an indefinite Sasakian space form to be totally geodesic and check the effect of Weyl projective pseudosymmetry conditions on the geometry of a lightlike hypersurface of an indefinite Sasakian space form. Moreover we give some physical interpretations of pseudo-symmetry conditions.
    MSC: 53C25;53C40;53C50
  • 加载中
  • [1] A. Adamow and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math, 16(1983), 39-59.

    Google Scholar

    [2] K. Arslan, Y. Çelik, R. Deszcz and R. Ezentaş, On the equivalence of Riccisemisymmetry and semisymmetry, Colloquium Mathematicum, 76(1998)(2), 279-294.

    Google Scholar

    [3] A. Ashtekar and B. Krishnan, Dynamical horizons and their properties, Physical Review D, 68(2003)(10), 104030, 25 pp.

    Google Scholar

    [4] C. Calin, Contribution to geometry of CR-submanifold, Ph.D. Thesis, University of Iasi, Iasi, Romania, 1998.

    Google Scholar

    [5] E. Cartan, Surune classse remarqable d'espaces de Rieamnnian, Bull. Soc. Math. France, 54(1926), 214-264.

    Google Scholar

    [6] U.C. De, C. Murathan and C. Özgür, Pseudo symmetric and pseudo Ricci symmetric warped product manifolds, Commun. Korean Math. Soc., 25(2010)(4), 615-621.

    Google Scholar

    [7] F. Defever, Ricci-semisymmetric hypersurfaces, Balkan J. of Geometry and Its Appl., 5(2000)(1), 81-91.

    Google Scholar

    [8] F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken,On pseudosymmetric space-times, J. Math. Phys., 35(1994), 5908-5921.

    Google Scholar

    [9] R. Deszcz, On certain classes of hypersurfaces in spaces of constant curvature, Geometry and Topology of Submanifolds. Singapore, World Sci., 8(1996), 101-110.

    Google Scholar

    [10] R. Deszcz, L. Verstraelen and L. Vrancken, The symmetry of warped product space-times, Gen. Relativity Gravitation, 23(1991)(6), 671-681.

    Google Scholar

    [11] R. Deszcz, L. Verstraelen and Ş.Yaprak, On hypersurfaces with pseudosymmetric Weyl tensor, Geometry and Topology of Submanifolds. Singapore, World Sci., 8(1996), 111-120.

    Google Scholar

    [12] R. Deszcz, M. Hotlos, J. Jelowicki, H. Kundu and A. A. Shaikh, Curvature properties of Gödel metric, Int. J. Geom. Methods Mod. Phys., 11(2014), 1450025[20 pages] DOI:10.1142/S021988781450025X.

    Google Scholar

    [13] K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Dordrecht:Kluwer Academic, 1996.

    Google Scholar

    [14] K.L. Duggal and A. Giménez, Lightlike hypersurfaces of Lorentzian manifolds with distinguished screen, J. Geom. Phys., 55(2005), 107-122.

    Google Scholar

    [15] K.L. Duggal and B. Şahin, Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG, 2010.

    Google Scholar

    [16] S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge, 1973.

    Google Scholar

    [17] S. Kazan and B. Şahin, Pseudosymmetric lightlike hypersurfaces, Turk J. Math., 38(2014), 1050-1070.

    Google Scholar

    [18] B. Krishnan, Isolated Horizons in Numerical Relativity, Ph.D Thesis. The Pennsylvania State University, 2002.

    Google Scholar

    [19] M. D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev., 119(1960), 1743-1745.

    Google Scholar

    [20] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 1996.

    Google Scholar

    [21] O. Lungiambudila, F. Massamba and J. Tossa, Symmetry properties of lightlike hypersurfaces in indefinite Sasakian manifolds, SUT. J. Math, 46(2010)(2), 177-204.

    Google Scholar

    [22] F. Massamba, Semi-parallel lightlike hypersurfaces of indefinite Sasakian manifolds, Int. J. Contemp. Math. Sciences, 3(2008)(13), 629-634.

    Google Scholar

    [23] F. Massamba, On weakly Ricci symmetric lightlike hypersurfaces of indefinite Sasakian manifolds, SUT J. Math., 44(2008)(2), 165-185.

    Google Scholar

    [24] F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. of Geometry, 95(2009)(1-2), 73-89.

    Google Scholar

    [25] F. Massamba, Symmetry of null geometry in indefinite Kenmotsu manifolds, Mediterranean Journal of Mathematics, 10(2013)(3), 1079-1099.

    Google Scholar

    [26] D. Narain, A. Prakash and B.Prasad, A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold, Analele Ştiinţifice Ale Universităţii "Al.i. Cuza" din Iaşi (S.N.) Matematică, Tomul LV., 2(2009), 275-284.

    Google Scholar

    [27] A. Z. Petrov, Einstein Spaces, Pergamon, Oxford, 1969.

    Google Scholar

    [28] C. Özgür, Pseudo Simetrik Manifoldlar (Turkish), Ph.D Thesis, Uludağ University, Turkey, 2001.

    Google Scholar

    [29] B. Şahin, Lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature conditions of semisymmetry type, Turk J. Math., 31(2007), 139-162.

    Google Scholar

    [30] J. Sultana and C. C. Dyer, Conformal Killing horizons, J. Math. Phys., 45(2004)(12), 4764-4776.

    Google Scholar

    [31] J. Sultana and C. C. Dyer, Cosmological black holes:A black hole in the Einstein-de Sitter universe, Gen. Relativ. Gravit., 37(2005)(8), 1349-1370.

    Google Scholar

    [32] G. Szekeres, On the singularities of a Riemannian manifold, Publ. Math. Debrecen, 7(1960), 285-301.

    Google Scholar

    [33] R. Takagi, An example of Riemannian manifold satisfying R(X, Y):R=0 but not ∇R=0, Tôhoku Math. J., 24(1972), 105-108.

    Google Scholar

    [34] T. Takahashi, Sasakian manifolds with pseudo-Riemannian metric, Tôhoku Math. J., 21(1969), 271-290.

    Google Scholar

    [35] A. Upadhyay and R.S. Gupta, Semi-parallel lightlike hypersurfaces of indefinite cosymplectic space forms, Publ. Inst. Math. (Beograd) (N.S.), 89(2011)(103), 69-75.

    Google Scholar

Article Metrics

Article views(2276) PDF downloads(961) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint