[1]
|
A. Adamow and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math, 16(1983), 39-59.
Google Scholar
|
[2]
|
K. Arslan, Y. Çelik, R. Deszcz and R. Ezentaş, On the equivalence of Riccisemisymmetry and semisymmetry, Colloquium Mathematicum, 76(1998)(2), 279-294.
Google Scholar
|
[3]
|
A. Ashtekar and B. Krishnan, Dynamical horizons and their properties, Physical Review D, 68(2003)(10), 104030, 25 pp.
Google Scholar
|
[4]
|
C. Calin, Contribution to geometry of CR-submanifold, Ph.D. Thesis, University of Iasi, Iasi, Romania, 1998.
Google Scholar
|
[5]
|
E. Cartan, Surune classse remarqable d'espaces de Rieamnnian, Bull. Soc. Math. France, 54(1926), 214-264.
Google Scholar
|
[6]
|
U.C. De, C. Murathan and C. Özgür, Pseudo symmetric and pseudo Ricci symmetric warped product manifolds, Commun. Korean Math. Soc., 25(2010)(4), 615-621.
Google Scholar
|
[7]
|
F. Defever, Ricci-semisymmetric hypersurfaces, Balkan J. of Geometry and Its Appl., 5(2000)(1), 81-91.
Google Scholar
|
[8]
|
F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken,On pseudosymmetric space-times, J. Math. Phys., 35(1994), 5908-5921.
Google Scholar
|
[9]
|
R. Deszcz, On certain classes of hypersurfaces in spaces of constant curvature, Geometry and Topology of Submanifolds. Singapore, World Sci., 8(1996), 101-110.
Google Scholar
|
[10]
|
R. Deszcz, L. Verstraelen and L. Vrancken, The symmetry of warped product space-times, Gen. Relativity Gravitation, 23(1991)(6), 671-681.
Google Scholar
|
[11]
|
R. Deszcz, L. Verstraelen and Ş.Yaprak, On hypersurfaces with pseudosymmetric Weyl tensor, Geometry and Topology of Submanifolds. Singapore, World Sci., 8(1996), 111-120.
Google Scholar
|
[12]
|
R. Deszcz, M. Hotlos, J. Jelowicki, H. Kundu and A. A. Shaikh, Curvature properties of Gödel metric, Int. J. Geom. Methods Mod. Phys., 11(2014), 1450025[20 pages] DOI:10.1142/S021988781450025X.
Google Scholar
|
[13]
|
K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Dordrecht:Kluwer Academic, 1996.
Google Scholar
|
[14]
|
K.L. Duggal and A. Giménez, Lightlike hypersurfaces of Lorentzian manifolds with distinguished screen, J. Geom. Phys., 55(2005), 107-122.
Google Scholar
|
[15]
|
K.L. Duggal and B. Şahin, Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG, 2010.
Google Scholar
|
[16]
|
S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge, 1973.
Google Scholar
|
[17]
|
S. Kazan and B. Şahin, Pseudosymmetric lightlike hypersurfaces, Turk J. Math., 38(2014), 1050-1070.
Google Scholar
|
[18]
|
B. Krishnan, Isolated Horizons in Numerical Relativity, Ph.D Thesis. The Pennsylvania State University, 2002.
Google Scholar
|
[19]
|
M. D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev., 119(1960), 1743-1745.
Google Scholar
|
[20]
|
D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 1996.
Google Scholar
|
[21]
|
O. Lungiambudila, F. Massamba and J. Tossa, Symmetry properties of lightlike hypersurfaces in indefinite Sasakian manifolds, SUT. J. Math, 46(2010)(2), 177-204.
Google Scholar
|
[22]
|
F. Massamba, Semi-parallel lightlike hypersurfaces of indefinite Sasakian manifolds, Int. J. Contemp. Math. Sciences, 3(2008)(13), 629-634.
Google Scholar
|
[23]
|
F. Massamba, On weakly Ricci symmetric lightlike hypersurfaces of indefinite Sasakian manifolds, SUT J. Math., 44(2008)(2), 165-185.
Google Scholar
|
[24]
|
F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. of Geometry, 95(2009)(1-2), 73-89.
Google Scholar
|
[25]
|
F. Massamba, Symmetry of null geometry in indefinite Kenmotsu manifolds, Mediterranean Journal of Mathematics, 10(2013)(3), 1079-1099.
Google Scholar
|
[26]
|
D. Narain, A. Prakash and B.Prasad, A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold, Analele Ştiinţifice Ale Universităţii "Al.i. Cuza" din Iaşi (S.N.) Matematică, Tomul LV., 2(2009), 275-284.
Google Scholar
|
[27]
|
A. Z. Petrov, Einstein Spaces, Pergamon, Oxford, 1969.
Google Scholar
|
[28]
|
C. Özgür, Pseudo Simetrik Manifoldlar (Turkish), Ph.D Thesis, Uludağ University, Turkey, 2001.
Google Scholar
|
[29]
|
B. Şahin, Lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature conditions of semisymmetry type, Turk J. Math., 31(2007), 139-162.
Google Scholar
|
[30]
|
J. Sultana and C. C. Dyer, Conformal Killing horizons, J. Math. Phys., 45(2004)(12), 4764-4776.
Google Scholar
|
[31]
|
J. Sultana and C. C. Dyer, Cosmological black holes:A black hole in the Einstein-de Sitter universe, Gen. Relativ. Gravit., 37(2005)(8), 1349-1370.
Google Scholar
|
[32]
|
G. Szekeres, On the singularities of a Riemannian manifold, Publ. Math. Debrecen, 7(1960), 285-301.
Google Scholar
|
[33]
|
R. Takagi, An example of Riemannian manifold satisfying R(X, Y):R=0 but not ∇R=0, Tôhoku Math. J., 24(1972), 105-108.
Google Scholar
|
[34]
|
T. Takahashi, Sasakian manifolds with pseudo-Riemannian metric, Tôhoku Math. J., 21(1969), 271-290.
Google Scholar
|
[35]
|
A. Upadhyay and R.S. Gupta, Semi-parallel lightlike hypersurfaces of indefinite cosymplectic space forms, Publ. Inst. Math. (Beograd) (N.S.), 89(2011)(103), 69-75.
Google Scholar
|