[1]
|
T.R. Blows and N.G. Lloyd, The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 98(1984)(3-4), 215-239.
Google Scholar
|
[2]
|
J. Carr, Applications of centre manifold theory, Applied Mathematical Sciences, Vol. 35, Springer-Verleg, New York, 1981.
Google Scholar
|
[3]
|
J. Chavarriga and J. Giné, Integrability of a linear center perturbed by fourth degree homogeneous polynomial, Publ. Mat., 40(1996)(1), 21-39.
Google Scholar
|
[4]
|
C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12(1999)(4), 1099-1112.
Google Scholar
|
[5]
|
C. Christopher, P. Mardešić and C. Rousseau, Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C2, J. Dyn. Control Sys., 9(2003)(3), 311-363.
Google Scholar
|
[6]
|
C. Du, Y. Liu and H. Chen, The bifurcation of limit cycles in Zn-equivariant vector fields, Appl. Math. Comput., 217(2010)(5), 2041-2056.
Google Scholar
|
[7]
|
J. Giné, Limit cycle bifurcations from a non-degenerate center, Appl. Math. Comput., 218(2012)(9), 4703-4709.
Google Scholar
|
[8]
|
G.M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, second edition, Springer, Heidelberg, 2008.
Google Scholar
|
[9]
|
M. Han and P. Yu, Normal Forms, Melnikov Functions, and Bifurcation of Limit Cycles, Springer-Verlag, New York, 2012.
Google Scholar
|
[10]
|
M. Han, Y. Tian and P. Yu, Small-amplitude limit cycles of polynomial Lienard systems, Sci. China Math., 56(2013)(8), 1543-1556.
Google Scholar
|
[11]
|
M. Han, Bifurcation Theory of Limit Cycles, Mathematics Monograph Series, Vol. 25, Science Press, Beijing, 2013.
Google Scholar
|
[12]
|
M. Han and P. Yu, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 44(2015)(6), 17-20.
Google Scholar
|
[13]
|
C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Diff. Equ., 246(2009)(9), 3609-3619.
Google Scholar
|
[14]
|
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos, 13(2003)(1), 47-106.
Google Scholar
|
[15]
|
J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 9(2010)(1-2), 167-219.
Google Scholar
|
[16]
|
Y. Liu, J. Li and W. Huang, Singular Point Values, Center Problem and Bifurcations of Limit Cycles of Two Dimensional Differential Autonomous Systems, Nonlinear Sciences Series, Vol. 6, Science Press, Beijing, 2008.
Google Scholar
|
[17]
|
K.E. Malkin, Criteria for the center for a certain differential equation, Volg. Matem. Sbornik, 2(1964), 87-91.
Google Scholar
|
[18]
|
V.G. Romanovski and D.S. Shafer, On the center problem for p:-q resonant polynomial vector fields, B. Belg. Math. Soc-Sim., 15(2008)(5), 871-887.
Google Scholar
|
[19]
|
V.G. Romanovski, Time-Reversibility in 2-Dimensional systems, Open Sys., Inf. Dynamics, 15(2008)(4), 359-370.
Google Scholar
|
[20]
|
V.G. Romanovski and D.S. Shafer, The Center and Cyclicity Problems:A Computational Algebra Approach, Birkhäuser, Boston, 2009.
Google Scholar
|
[21]
|
B. Sang, Center problem for a class of degenerate quartic systems, Electron. J. Qual. Theory Differ. Equ., 74(2014), 1-17.
Google Scholar
|
[22]
|
B. Sang, Q. Wang and W. Huang, Computation of focal values and stability analysis of 4-dimensional systems, Electron. J. Diff. Equ., 209(2015), 1-11.
Google Scholar
|
[23]
|
D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc., 338(1993)(2), 799-841.
Google Scholar
|
[24]
|
Y. Shao and K. Wu, The cyclicity of the period annulus of two classes of cubic isochronous systems, J. Appl. Anal. Comput., 3(2013)(3), 279-290.
Google Scholar
|
[25]
|
Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, Bull. Sci. Math., 134(2010)(7), 786-798.
Google Scholar
|
[26]
|
J. Yang, M. Han, J. Li and P. Yu, Existence conditions of thirteen limit cycles in a cubic system, Int. J. Bifurcation and Chaos, 20(2010)(8), 2569-2577.
Google Scholar
|
[27]
|
P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211(1998)(1), 19-38.
Google Scholar
|
[28]
|
P. Yu and M. Han, Twelve limit cycles in a 3rd-order planar system with Z2 symmetry, Commun. Pure Appl. Anal., 3(2004)(3), 515-526.
Google Scholar
|
[29]
|
P. Yu and J. Lu, Bifurcation control for a class of Lorenz-like systems, Int. J. Bifurcation and Chaos, 21(2011)(9), 2647-2664.
Google Scholar
|
[30]
|
P. Yu and M. Han, Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials, Int. J. Bifurcation and Chaos, 22(2012)(10), 1250254(28 pages).
Google Scholar
|
[31]
|
P. Yu and M. Han, Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations, Chaos Solitons Fractals, 45(2012)(6), 772-794.
Google Scholar
|
[32]
|
P. Yu and M. Han, Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations, Commun. Nonl. Sci. Numer. Simulat., 18(2013)(4), 978-988.
Google Scholar
|
[33]
|
P. Yu and Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonl. Sci. Numer. Simulat., 19(2014)(8), 2690-2705.
Google Scholar
|
[34]
|
H. Żołądek, _The problem of center for resonant singular points of polynomial vector fields, J. Diff. Equ., 137(1997)(1), 94-118.
Google Scholar
|