[1]
|
I. Barbălat, Systems d'equations differentielle d'oscillations nonlineaires, Rev. Roumaine Math. Pures. Appl., 4(1959), 267-270.
Google Scholar
|
[2]
|
A. Berman and R. J Plemmons, Nonnegative Matrices In The Mathematical Science, Academic Press, New York, NY, USA, 1979.
Google Scholar
|
[3]
|
W. Ding, Dynamic of a non-autonomous predator-prey system with infinite delay and diffusion, Comput. Math. Appl., 56(2008), 1335-1350.
Google Scholar
|
[4]
|
M. Fan and K. Wang, Periodicity and stability in periodic n-Species LotkaVolterra competition system with feedback controls and deviating arguments, Acta Math. Sinica, English Series, 19(2003)(4), 801-822.
Google Scholar
|
[5]
|
R. E Gaines and J. L Mawhin, Coincidence Degree And Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.
Google Scholar
|
[6]
|
K. Gopalsamy, Stability and Oscillation In Delay Differential Equations Of Population Dynamics. Mathematicx And Its Applications, Kluwer Academic Publishers Group, Dordrecht, 1992.
Google Scholar
|
[7]
|
K. Gopalsamy and P. Weng, Feedback regulation of logistic growth, Int. J. Math. Sci., 16(1993)(1), 177-192.
Google Scholar
|
[8]
|
D. Guo, J. Sun and Z. Liu, Functional Method in Nonlinear Ordinary Differential Equations, Shangdong Scientific Press, Shandong, China, 2005.
Google Scholar
|
[9]
|
M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5(2015)(4), 809-815.
Google Scholar
|
[10]
|
J. P LaSalle, The Stability of Dynamical System, Society For Industrial And Applied Mathematics, Philadelphia, Pa, USA, 1976.
Google Scholar
|
[11]
|
F. Liang, M. Han, and X. Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 255(2013)(12), 4403-4436.
Google Scholar
|
[12]
|
V. Romanovski, Y. H. Xia and X. Zhang, Varieties of local integrability of analytic differential systems and their applications, J. Differential Equations, 257(2014), 3079-3101,
Google Scholar
|
[13]
|
Y. L. Song and S. L. Yuan, Bifurcation analysis for a regulated logistic growth model, Appl. Math. Modelling, 31(2007)(9), 1729-1738.
Google Scholar
|
[14]
|
Y. H. Xia and X. Chen and V. Romanovski, On the Linearization Theorem of Fenner and Pinto, J. Math. Anal. Appl., 400(2013), 439-451.
Google Scholar
|
[15]
|
Y. H Xia and M. Han, New conditions on the existence and stability of periodic solution in Lotka-Volterra's population system, SIAM. J. Appl. Math., 69(2009), 1580-1597.
Google Scholar
|
[16]
|
Y. H. Xia, Global Analysis of an impulsive delayed Lotka-Volterra competition system, Commun. Nonlinear Sci. Numer. Simulat., 16(2011), 1597-1616.
Google Scholar
|
[17]
|
Y. Xiao, S. Tang and J. Chen, Permanence and periodic solution in competitive system with feedback controls, Math. Comput. Model., 27(1998), 33-37.
Google Scholar
|
[18]
|
J. Yang, M. Han, W. Z. Huang, On Hopf bifurcations of piecewise planar Hamiltonian systems, J. Diff. Equat., 250(2011), 1026-1051.
Google Scholar
|
[19]
|
J. Yang and F. Liang, Limit cycle bifurcations of a kind of Lienard system with a hypobolic saddle and a nilpotent cusp, J. Appl. Anal. Comput., 5(2015), 515-526.
Google Scholar
|
[20]
|
S. L. Yuan and Y. L. Song, Stability and Hopf bifurcations in a delayed LeslieGower predator-prey system, J. Math. Anal. Appl., 355(2009), 82-100.
Google Scholar
|