[1]
|
E. H. Ait Dads, L. Lhachimi and P. Cieutat, Structure of the set of bounded solutions and existence of pseudo almost-periodic solutions of a Liénard equation, Differential Integral Equations, 20(2007)(7), 793-813.
Google Scholar
|
[2]
|
J. Blot, G. M. Mophou, G. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal., 71(2009)(3-4), 903-909.
Google Scholar
|
[3]
|
S. Bochner, A new approach to almost periodicity, Proc. Natl. Acad. Sci. USA, 48(1962)(12), 2039-2043.
Google Scholar
|
[4]
|
J. Campos and P. J. Torres, On the structure of the set of bounded solutions on a periodic Liénard equation, Proc. Amer. Math. Soc., 127(1999)(5), 1453-1462.
Google Scholar
|
[5]
|
T. Caraballo and D. Cheban, Almost periodic and asymptotically almost periodic solutions of Liénard equations, Discrete Contin. Dyn. Syst. Ser. B, 16(2011)(3), 703-717.
Google Scholar
|
[6]
|
Y.Q. Chen, On Massera's theorem for anti-periodic solution, Adv. Math. Sci. Appl., 9(1999), 125-128.
Google Scholar
|
[7]
|
P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Anal., 58(2004)(7-8), 885-898.
Google Scholar
|
[8]
|
P. Cieutat and K. Ezzinbi, Existence, uniqueness and attractiveness of a pseudo almost automorphic solutions for some dissipative differential equations in Banach space, J. Math. Anal. Appl., 354(2009)(2), 494-506.
Google Scholar
|
[9]
|
P. Cieutat, S. Fatajou and G. M. N'Guérékata, Bounded and almost automorphic solutions of a Liénard equation with a singular nonlinearity, Electron. J. Qual. Theory Differ. Equ., 2008(2008)(21), 1-15.
Google Scholar
|
[10]
|
F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equation, Nonlinearity, 9(1996)(6), 1489-1500.
Google Scholar
|
[11]
|
K. Ezzinbi, S. Fatajou and G. M. N'Guérékata, Cn-almost automorphic solutions for partial neutral functional differential equations, Appl. Anal., 86(2007)(9), 1127-1146.
Google Scholar
|
[12]
|
J. R. Graef, Boundedness and oscillation of solutions of the Liénard equation, Bull. Amer. Math. Soc., 77(1971)(3), 418-421.
Google Scholar
|
[13]
|
J. W. Heidel, Global asymptotic stability of a generalized Liénard equation, SIAM J. Appl. Math., 19(1970)(3), 629-363.
Google Scholar
|
[14]
|
R. A. Johnson, A linear almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82(1981)(2), 199-205.
Google Scholar
|
[15]
|
J. Kato, On a boundedness condition for solutions of a generalized Liénard equation, J. Differential Equations, 65(1986)(2), 269-286.
Google Scholar
|
[16]
|
N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math., 45(1944)(2), 723-737.
Google Scholar
|
[17]
|
J. Liu, G.M. N'Guérékata and N. Van Minh, A Massera type theorem for almost automorphic solutions of differential equations, J. Math. Anal. Appl., 299(2004)(2), 587-599.
Google Scholar
|
[18]
|
P. Martínez-Amores and P. J. Torres, Dynamics of a periodic differential equation with a singular nonlinearity of attractive type, J. Math. Anal. Appl., 202(1996)(3), 1027-1039.
Google Scholar
|
[19]
|
J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17(1950)(4), 457-475.
Google Scholar
|
[20]
|
G.M. Mophou and G. M. N'Guérékata, On some classes of almost automorphic functions and applications to fractional differential equations, Comput. Math. Appl., 59(2010)(3), 1310-1317.
Google Scholar
|
[21]
|
S. Murakami, T. Naito and N. Van Minh, Massera's theorem for almost periodic solutions of functional differential equations, J. Math. Soc. Japan, 56(2004)(1), 247-268.
Google Scholar
|
[22]
|
P. Murthy, Periodic solutions of two-dimensional forced system:the Massera theorem and its extension, J. Dynam. Diff. Eqs, 10(1998)(2), 275-302.
Google Scholar
|
[23]
|
G. M. N'Guérékata, Sur les solutions presque automorphes d'équations différentielles abstraites, Ann. Sci. Math. Québec., 1(1981), 69-79.
Google Scholar
|
[24]
|
G. M. N'Guérékata, Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plnum Publishers, New York, London, Moscow, 2001.
Google Scholar
|
[25]
|
G. M. N'Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.
Google Scholar
|
[26]
|
Z. Opial, Sur les intégrales bornées de l'équation u″=f(t,u,u′), Ann. Polon. Math, 4(1958), 314-324.
Google Scholar
|
[27]
|
R. Ortega and M. Tarallo, Massera's theorem for quasi-periodic differential equations, Topol. Methods Nonlinear Anal., 19(2002)(1), 39-62.
Google Scholar
|
[28]
|
R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions, J. Funct. Anal., 237(2006)(2), 402-426.
Google Scholar
|
[29]
|
W. Shen and Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Mem. Amer. Math. Soc., 136(1998)(647).
Google Scholar
|
[30]
|
V. E. Slyusarchuk, Neccessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations, Acta Appl. Math., 65(2001)(1), 333-341.
Google Scholar
|
[31]
|
T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.
Google Scholar
|
[32]
|
Z. F. Zhang, Proof of the uniqueness theorem of limit cycles of generalized Liénard equations, Appl. Anal., 23(1986)(1-2), 63-76.
Google Scholar
|
[33]
|
V. V. Zhikov and B. M. Levitan, Favard theory, Russian Math. Surveys, 32(1977)(2), 129-180.
Google Scholar
|