2017 Volume 7 Issue 1
Article Contents

Zhinan Xia, Meng Fan, Ravi P Agarwal. ALMOST AUTOMORPHIC DYNAMICS OF GENERALIZED LIÉNARD EQUATION[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 20-38. doi: 10.11948/2017002
Citation: Zhinan Xia, Meng Fan, Ravi P Agarwal. ALMOST AUTOMORPHIC DYNAMICS OF GENERALIZED LIÉNARD EQUATION[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 20-38. doi: 10.11948/2017002

ALMOST AUTOMORPHIC DYNAMICS OF GENERALIZED LIÉNARD EQUATION

  • Fund Project:
  • In this study, we focus on the solutions of the Liénard equation being bounded in the future and characterize the almost automorphic, asymptotically almost automorphic, and weighted pseudo almost automorphic dynamics. An example is presented to illustrate the main findings.
    MSC: 43A60;35B40
  • 加载中
  • [1] E. H. Ait Dads, L. Lhachimi and P. Cieutat, Structure of the set of bounded solutions and existence of pseudo almost-periodic solutions of a Liénard equation, Differential Integral Equations, 20(2007)(7), 793-813.

    Google Scholar

    [2] J. Blot, G. M. Mophou, G. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal., 71(2009)(3-4), 903-909.

    Google Scholar

    [3] S. Bochner, A new approach to almost periodicity, Proc. Natl. Acad. Sci. USA, 48(1962)(12), 2039-2043.

    Google Scholar

    [4] J. Campos and P. J. Torres, On the structure of the set of bounded solutions on a periodic Liénard equation, Proc. Amer. Math. Soc., 127(1999)(5), 1453-1462.

    Google Scholar

    [5] T. Caraballo and D. Cheban, Almost periodic and asymptotically almost periodic solutions of Liénard equations, Discrete Contin. Dyn. Syst. Ser. B, 16(2011)(3), 703-717.

    Google Scholar

    [6] Y.Q. Chen, On Massera's theorem for anti-periodic solution, Adv. Math. Sci. Appl., 9(1999), 125-128.

    Google Scholar

    [7] P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Anal., 58(2004)(7-8), 885-898.

    Google Scholar

    [8] P. Cieutat and K. Ezzinbi, Existence, uniqueness and attractiveness of a pseudo almost automorphic solutions for some dissipative differential equations in Banach space, J. Math. Anal. Appl., 354(2009)(2), 494-506.

    Google Scholar

    [9] P. Cieutat, S. Fatajou and G. M. N'Guérékata, Bounded and almost automorphic solutions of a Liénard equation with a singular nonlinearity, Electron. J. Qual. Theory Differ. Equ., 2008(2008)(21), 1-15.

    Google Scholar

    [10] F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equation, Nonlinearity, 9(1996)(6), 1489-1500.

    Google Scholar

    [11] K. Ezzinbi, S. Fatajou and G. M. N'Guérékata, Cn-almost automorphic solutions for partial neutral functional differential equations, Appl. Anal., 86(2007)(9), 1127-1146.

    Google Scholar

    [12] J. R. Graef, Boundedness and oscillation of solutions of the Liénard equation, Bull. Amer. Math. Soc., 77(1971)(3), 418-421.

    Google Scholar

    [13] J. W. Heidel, Global asymptotic stability of a generalized Liénard equation, SIAM J. Appl. Math., 19(1970)(3), 629-363.

    Google Scholar

    [14] R. A. Johnson, A linear almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82(1981)(2), 199-205.

    Google Scholar

    [15] J. Kato, On a boundedness condition for solutions of a generalized Liénard equation, J. Differential Equations, 65(1986)(2), 269-286.

    Google Scholar

    [16] N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math., 45(1944)(2), 723-737.

    Google Scholar

    [17] J. Liu, G.M. N'Guérékata and N. Van Minh, A Massera type theorem for almost automorphic solutions of differential equations, J. Math. Anal. Appl., 299(2004)(2), 587-599.

    Google Scholar

    [18] P. Martínez-Amores and P. J. Torres, Dynamics of a periodic differential equation with a singular nonlinearity of attractive type, J. Math. Anal. Appl., 202(1996)(3), 1027-1039.

    Google Scholar

    [19] J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17(1950)(4), 457-475.

    Google Scholar

    [20] G.M. Mophou and G. M. N'Guérékata, On some classes of almost automorphic functions and applications to fractional differential equations, Comput. Math. Appl., 59(2010)(3), 1310-1317.

    Google Scholar

    [21] S. Murakami, T. Naito and N. Van Minh, Massera's theorem for almost periodic solutions of functional differential equations, J. Math. Soc. Japan, 56(2004)(1), 247-268.

    Google Scholar

    [22] P. Murthy, Periodic solutions of two-dimensional forced system:the Massera theorem and its extension, J. Dynam. Diff. Eqs, 10(1998)(2), 275-302.

    Google Scholar

    [23] G. M. N'Guérékata, Sur les solutions presque automorphes d'équations différentielles abstraites, Ann. Sci. Math. Québec., 1(1981), 69-79.

    Google Scholar

    [24] G. M. N'Guérékata, Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plnum Publishers, New York, London, Moscow, 2001.

    Google Scholar

    [25] G. M. N'Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.

    Google Scholar

    [26] Z. Opial, Sur les intégrales bornées de l'équation u″=f(t,u,u′), Ann. Polon. Math, 4(1958), 314-324.

    Google Scholar

    [27] R. Ortega and M. Tarallo, Massera's theorem for quasi-periodic differential equations, Topol. Methods Nonlinear Anal., 19(2002)(1), 39-62.

    Google Scholar

    [28] R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions, J. Funct. Anal., 237(2006)(2), 402-426.

    Google Scholar

    [29] W. Shen and Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Mem. Amer. Math. Soc., 136(1998)(647).

    Google Scholar

    [30] V. E. Slyusarchuk, Neccessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations, Acta Appl. Math., 65(2001)(1), 333-341.

    Google Scholar

    [31] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

    Google Scholar

    [32] Z. F. Zhang, Proof of the uniqueness theorem of limit cycles of generalized Liénard equations, Appl. Anal., 23(1986)(1-2), 63-76.

    Google Scholar

    [33] V. V. Zhikov and B. M. Levitan, Favard theory, Russian Math. Surveys, 32(1977)(2), 129-180.

    Google Scholar

Article Metrics

Article views(2426) PDF downloads(5005) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint