[1]
|
S. Abbas, M. Banerjee and S. Momanic, Dynamical analysis of fractional-order modified logistic model, Computers & Mathematics with Applications, 62(2011), 1098-1104.
Google Scholar
|
[2]
|
N. F. Britton, Reaction-Diffusion equations and their applications to biology, Academic Press, New York, 1986.
Google Scholar
|
[3]
|
L. Berec, E. angulo and F. Courchamp, Multiple Allee effects and population management, Trend in Ecology and Evolution, 22(2006), 185-191.
Google Scholar
|
[4]
|
F. Courchamp, L. Berec and J. Gascoigne, Allee Effects, Oxford University Press, Oxford, 2008.
Google Scholar
|
[5]
|
F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14(1999), 405-410.
Google Scholar
|
[6]
|
F. Courchamp, L. Berec and J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, New York, 2008.
Google Scholar
|
[7]
|
M. Dehghan, M. Abbaszadeh and A. Mohebbi, Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, Journal of Computational and Applied Mathematics, 280(2015), 14-36.
Google Scholar
|
[8]
|
A. M. A. El-Sayed, S. Z. Rida and A. A. M. Arafa, Exact solutions of fractionalorder biological population model, Commun. Theor. Phys., 52(2009)992.
Google Scholar
|
[9]
|
R. A. Kraenkel, K. Manikandan and M. Senthilvelan, On certain new exact solutions of a diffusive predator-prey system, Communications in Nonlinear Science and Numerical Simulation, 18(2013), 1269-1274.
Google Scholar
|
[10]
|
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51(2006), 1367-1376.
Google Scholar
|
[11]
|
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Communications in Nonlinear Sciences and Numerical Simulation, 17(2012), 2248-2253.
Google Scholar
|
[12]
|
A. Kandler and R. Unger, Population disposal via diffusion-reaction equations, University College London.
Google Scholar
|
[13]
|
S. Mohyud-Din, A. Yildirim and Y. Gulkanat, Approximate analysis of population dynamics with density-dependent migrations and the Allee effects, International Journal of Numerical Methods for Heat and Fluid Flow, 22(2012), 243-250.
Google Scholar
|
[14]
|
J. D. Murray, Mathematical biology, In Ⅱ. Spatial Models and Biomedical Applications, Springer-Verlag, Berlin, 2003.
Google Scholar
|
[15]
|
C. Neuhauser, Mathematical challenges in spatial ecology, Notices Ams. Math. Soc., 48(2001), 1304-1314.
Google Scholar
|
[16]
|
S. V. Petrovskii and B. L. Li, Exactly solvable models of biological invasion, Chapman & Hall/CRC, New York, 2006.
Google Scholar
|
[17]
|
S. S. Ray, Soliton solutions for time fractional coupled modified KdV equations using new coupled fractional reduced differential transform method, J. Math. Chem., 58(2013), 2214-2229.
Google Scholar
|
[18]
|
J. H. Choi, H. Kim and R. Sakthivel, Exact solution of the Wick-type stochastic fractional coupled KdV equations, J Math Chem., 52(2014), 2482-2493.
Google Scholar
|
[19]
|
F. Shakeri and M. Dehghan, Solution of a model describing biological species living together using the variational iteration method, Mathematical and Computer Modelling, 48(2008), 685-699.
Google Scholar
|
[20]
|
L. Shu and P. Weng, Traveling wave solutions of a diffusive SI model with strong Allee effect, Applied Mathematics and Computation, 222(2013), 190-200.
Google Scholar
|
[21]
|
P. A. Stephens, W. J. Sutherland and R.P. Freckleton, What is the Allee Effect? Oikos, 87(1999), 185-190.
Google Scholar
|
[22]
|
S. Zhou, Y. Liu, and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theoretical Population Biology, 67(2005), 23-31.
Google Scholar
|