[1]
|
W. Allegretto, G. Cao, G. Li and Y. Lin, Numerical analysis of tumor model in steady state, Comput. Math. Appl., 52(2006)(5), 593-606.
Google Scholar
|
[2]
|
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8(1971)(2), 321-340.
Google Scholar
|
[3]
|
V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model:invasion and branching, J. Math. Biol., 58(2009)(4-5), 723-763.
Google Scholar
|
[4]
|
V. Cristini, J. S. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46(2003)(3), 191-224.
Google Scholar
|
[5]
|
J. Escher and A.V. Matioc, Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math., 97(2011)(1), 79-90.
Google Scholar
|
[6]
|
A. Friedman and B. Hu, Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Am. Math. Soc., 360(2008)(10), 5291-5342.
Google Scholar
|
[7]
|
H. Hao, J. D. Hauenstein, B. Hu, Y. Liu, A. J. Sommese and Y. Zhang, Bifurcation of steady-state solutions for a tumor model with a necrotic core, Nonlinear Anal. RWA, 13(2012), 694-709.
Google Scholar
|
[8]
|
Y. Jia, J. Wu and H. -K. Xu, Positive solutions for a predator-prey interaction model with Holling-type functional response and diffusion, Taiwanese J. Math., 15(2011)(5), 2013-2034.
Google Scholar
|
[9]
|
E. Khain and L. M. Sander, Dynamics and pattern formation in invasive tumor growth, Phys. Rev. Lett., 96(2006)(18), 188103-1-4.
Google Scholar
|
[10]
|
D. A. Knopoff, D. R. Fernandez, G. A. Torres and C. V. Turner, Adjoint method for a tumor growth PDE-constrained optimization problem, Comput. Math. Appl., 66(2013)(6), 1104-1119.
Google Scholar
|
[11]
|
P. Liu, J. Shi, R. Wang and Y. Wang, Bifurcation analysis of a generic reactiondiffusion Turing model, Int. J. Bifurcation Chaos, 24(2014)(4), 1450042-1-12.
Google Scholar
|
[12]
|
J. Liu and J. Wei, On Hopf bifurcation of a delayed predator-prey system with diffusion, Int. J. Bifurcation Chaos, 23(2013)(2), 1350023-1-13.
Google Scholar
|
[13]
|
J. López-Gómeza and M. Molina-Meyerb, Bounded components of positive solutions of abstract fixed point equations:mushrooms, loops and isolas, J. Differential Equations, 209(2005)(2), 416-441.
Google Scholar
|
[14]
|
A. J. Lotka, Elements of Physical Biology, Williams & Wilkins Company, New York, 1925.
Google Scholar
|
[15]
|
Y. Lou and W. -M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131(1996)(1), 79-131.
Google Scholar
|
[16]
|
A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses:regimes with complete tumor elimination within the framework of deterministic model, Biol. Direct, 1(2006)(1), 231-276.
Google Scholar
|
[17]
|
J. Shi, Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models, Front Math. China, 4(2009)(3), 407-424.
Google Scholar
|
[18]
|
Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51(2005)(1), 37-74.
Google Scholar
|
[19]
|
K. Umezu, Global structure of supercritical bifurcation with turning points for the logistic elliptic equation with nonlinear boundary conditions, Nonlinear Anal., 89(2013)(3), 250-266.
Google Scholar
|
[20]
|
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei, 2(1926)(2), 31-113.
Google Scholar
|
[21]
|
Y. Wang and J. Wu, Stability of positive constant steady states and their bifurcation in a biological depletion model, Discrete Contin. Dyn. Syst. Ser. B, 15(2011)(3), 849-865.
Google Scholar
|
[22]
|
D. Wodarz, Viruses as antitumor weapons:defining conditions for tumor remission, Cancer Res., 61(2001)(8), 3501-3507.
Google Scholar
|
[23]
|
J. Wu and S. Cui, Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Method Appl. Sci., 38(2014)(9), 1813-1823.
Google Scholar
|
[24]
|
D. Yang, J. P. Tian and J. Wang, A solvable hyperbolic free boundary problem modelling tumour regrowth, Appl. Anal., 92(2013)(7), 1541-1558.
Google Scholar
|