[1]
|
P. Ademir and R. Lionel, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 2008, 57(8), 595-601.
Google Scholar
|
[2]
|
C. J. Amick, Regularity and uniqueness of solutions to the Boussinesq system of equations, J. Diff. Eqs., 1983, 54(2), 231-247.
Google Scholar
|
[3]
|
D. C. Antonopoulos and V. A. Dougalis, Error estimates for Galerkin approximations of the "classical" Boussinesq system, Math. Comp., 2013, 82(282), 689-717.
Google Scholar
|
[4]
|
J. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves, Phys. D, 1998, 116(1), 191-224.
Google Scholar
|
[5]
|
J. Bona, M. Chen and J. Saut, Boussinesq equations and other sytems for small-amplitude long waves in nonlinear dispersive media. I:Derivation and linear theory, J. Nonlinear Sci., 2002, 12(4), 283-318.
Google Scholar
|
[6]
|
J. Bona, M. Chen and J. Saut, Boussinesq equations and other sysytems for small-amplitude long waves in nonlinear dispersive media. Ⅱ:Nonlinear theory, Nonlinearity, 2004, 17(3), 925-952.
Google Scholar
|
[7]
|
J. Bona, A. Dougalis and D. Mitsotakis, Numerical solution of KdV-KdV systems of Boussinesq equations:I. The numerical scheme and existence of generalized solitary waves, Math. Comput. Simulat., 2007, 74(2-3), 214-228.
Google Scholar
|
[8]
|
J. Bona, A. Dougalis and D. Mitsotakis, Numerical solution of Boussinesq systems of KdV-KdV type:Ⅱ. Evolution of radiating solitary waves, Nonlinearity, 2008, 21(12), 2825-2848.
Google Scholar
|
[9]
|
J. Bona, T. Colin and C. Guillopé, Propagation of long-crested water waves, Discrete Contin. Dyn. Syst., 2013, 33(2), 599-628.
Google Scholar
|
[10]
|
J. Bona, Z. Grujić and H. Kalisch, A KdV-type Boussinesq system:from the energy level to analytic spaces, Discrete Contin. Dyn. Syst., 2010, 26(4), 1121-113.
Google Scholar
|
[11]
|
T. J. Bridges and E. G. Fan, Solitary waves, periodic waves, and a stability analysis for Zufiria's higher-order Boussinesq model for shallow water waves, Phy. Lett., 2004, 326A(5-6), 381-390.
Google Scholar
|
[12]
|
P. Daripa and R. K. Dash, A class of model equations for bi-directional propagation of capillary-gravity waves, Internat. J. Engrg. Sci., 2003, 41(2), 201-218.
Google Scholar
|
[13]
|
S. Deng and S. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 2009, 238(18), 1735-1751.
Google Scholar
|
[14]
|
S. Deng and S. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 2010, 42(6), 2721-2761.
Google Scholar
|
[15]
|
R. Hirota and J. Satsuma, Soliton-solutions of a coupled korteveg-devries, Phys. Lett. A., 1981, 85(8-9), 407-408.
Google Scholar
|
[16]
|
H. Kalisch andM. Bjøkavåg, Energy budget in a dispersive model for undular bores, Proc. Estonian Acad. Sci., 2010, 59(2), 172-181.
Google Scholar
|
[17]
|
H. Kielhöfer, Bifurcation theory:an introduction with applications to PDEs, Springer, New York, 2003.
Google Scholar
|
[18]
|
Y. S. Li, Some water wave equations and integrability, J. Nonlinear Math. Phy., 2005, 12(Supplement 1), 466-481.
Google Scholar
|
[19]
|
E. Lombardi, Homoclinic orbits to small periodic orbits for a class of reversible systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(5), 1035-1054.
Google Scholar
|
[20]
|
E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rational Mech. Anal., 1997, 137(3), 227-304.
Google Scholar
|
[21]
|
E. Lombardi, Oscillatory integrals and phenomena beyond all algebraic orders, Lecture Notes in Mathematics, Vol. 1741, Springer, New York, 2000.
Google Scholar
|
[22]
|
Y. Mammeri, Unique continuation property for Boussinesq-type systems, Comm. Math. Anal., 2010, 9(1), 121-127.
Google Scholar
|
[23]
|
D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Math. Comput. Simulat., 2009, 80(4), 860-873.
Google Scholar
|
[24]
|
A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 2008, 57(8), 595-601.
Google Scholar
|
[25]
|
M. E. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Diff. Eqs., 1981, 42(3), 325-352.
Google Scholar
|
[26]
|
M. Sorin, R. Lionel and Z. Bing, Control and stabilization of a family of Boussinesq systems, Discrete. Contin. Dyn. Syst., 2009, 24(2), 273-313.
Google Scholar
|
[27]
|
W. Walter, Gewöhnliche Differential gleichungen, Springer, New York, 1972.
Google Scholar
|