2017 Volume 7 Issue 2
Article Contents

Yixia Shi, Shengfu Deng. EXISTENCE OF GENERALIZED HOMOCLINIC SOLUTIONS OF A COUPLED KDV-TYPE BOUSSINESQ SYSTEM UNDER A SMALL PERTURBATION[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 392-410. doi: 10.11948/2017025
Citation: Yixia Shi, Shengfu Deng. EXISTENCE OF GENERALIZED HOMOCLINIC SOLUTIONS OF A COUPLED KDV-TYPE BOUSSINESQ SYSTEM UNDER A SMALL PERTURBATION[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 392-410. doi: 10.11948/2017025

EXISTENCE OF GENERALIZED HOMOCLINIC SOLUTIONS OF A COUPLED KDV-TYPE BOUSSINESQ SYSTEM UNDER A SMALL PERTURBATION

  • Fund Project:
  • This paper considers the coupled KdV-type Boussinesq system with a small perturbation uxx=6cv -6u -6uv + εf(ε,u,ux,v,vx),vxx=6cu -6v -3u2 + εg(ε,u,ux,v,vx),where c=1 + µ, µ>0 and ε are small parameters. The linear operator has a pair of real eigenvalues and a pair of purely imaginary eigenvalues. We first change this system into an equivalent system with dimension 4, and then show that its dominant system has a homoclinic solution and the whole system has a periodic solution if the perturbation functions g and h satisfy some conditions. By using the contraction mapping theorem, the perturbation theorem, and the reversibility, we theoretically prove that this homoclinic solution, when higher order terms are added, will persist and exponentially approach to the obtained periodic solution (called generalized homoclinic solution) for small ε and µ>0.
    MSC: 34B60;34C37;37C29
  • 加载中
  • [1] P. Ademir and R. Lionel, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 2008, 57(8), 595-601.

    Google Scholar

    [2] C. J. Amick, Regularity and uniqueness of solutions to the Boussinesq system of equations, J. Diff. Eqs., 1983, 54(2), 231-247.

    Google Scholar

    [3] D. C. Antonopoulos and V. A. Dougalis, Error estimates for Galerkin approximations of the "classical" Boussinesq system, Math. Comp., 2013, 82(282), 689-717.

    Google Scholar

    [4] J. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves, Phys. D, 1998, 116(1), 191-224.

    Google Scholar

    [5] J. Bona, M. Chen and J. Saut, Boussinesq equations and other sytems for small-amplitude long waves in nonlinear dispersive media. I:Derivation and linear theory, J. Nonlinear Sci., 2002, 12(4), 283-318.

    Google Scholar

    [6] J. Bona, M. Chen and J. Saut, Boussinesq equations and other sysytems for small-amplitude long waves in nonlinear dispersive media. Ⅱ:Nonlinear theory, Nonlinearity, 2004, 17(3), 925-952.

    Google Scholar

    [7] J. Bona, A. Dougalis and D. Mitsotakis, Numerical solution of KdV-KdV systems of Boussinesq equations:I. The numerical scheme and existence of generalized solitary waves, Math. Comput. Simulat., 2007, 74(2-3), 214-228.

    Google Scholar

    [8] J. Bona, A. Dougalis and D. Mitsotakis, Numerical solution of Boussinesq systems of KdV-KdV type:Ⅱ. Evolution of radiating solitary waves, Nonlinearity, 2008, 21(12), 2825-2848.

    Google Scholar

    [9] J. Bona, T. Colin and C. Guillopé, Propagation of long-crested water waves, Discrete Contin. Dyn. Syst., 2013, 33(2), 599-628.

    Google Scholar

    [10] J. Bona, Z. Grujić and H. Kalisch, A KdV-type Boussinesq system:from the energy level to analytic spaces, Discrete Contin. Dyn. Syst., 2010, 26(4), 1121-113.

    Google Scholar

    [11] T. J. Bridges and E. G. Fan, Solitary waves, periodic waves, and a stability analysis for Zufiria's higher-order Boussinesq model for shallow water waves, Phy. Lett., 2004, 326A(5-6), 381-390.

    Google Scholar

    [12] P. Daripa and R. K. Dash, A class of model equations for bi-directional propagation of capillary-gravity waves, Internat. J. Engrg. Sci., 2003, 41(2), 201-218.

    Google Scholar

    [13] S. Deng and S. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 2009, 238(18), 1735-1751.

    Google Scholar

    [14] S. Deng and S. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 2010, 42(6), 2721-2761.

    Google Scholar

    [15] R. Hirota and J. Satsuma, Soliton-solutions of a coupled korteveg-devries, Phys. Lett. A., 1981, 85(8-9), 407-408.

    Google Scholar

    [16] H. Kalisch andM. Bjøkavåg, Energy budget in a dispersive model for undular bores, Proc. Estonian Acad. Sci., 2010, 59(2), 172-181.

    Google Scholar

    [17] H. Kielhöfer, Bifurcation theory:an introduction with applications to PDEs, Springer, New York, 2003.

    Google Scholar

    [18] Y. S. Li, Some water wave equations and integrability, J. Nonlinear Math. Phy., 2005, 12(Supplement 1), 466-481.

    Google Scholar

    [19] E. Lombardi, Homoclinic orbits to small periodic orbits for a class of reversible systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(5), 1035-1054.

    Google Scholar

    [20] E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rational Mech. Anal., 1997, 137(3), 227-304.

    Google Scholar

    [21] E. Lombardi, Oscillatory integrals and phenomena beyond all algebraic orders, Lecture Notes in Mathematics, Vol. 1741, Springer, New York, 2000.

    Google Scholar

    [22] Y. Mammeri, Unique continuation property for Boussinesq-type systems, Comm. Math. Anal., 2010, 9(1), 121-127.

    Google Scholar

    [23] D. Mitsotakis, Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Math. Comput. Simulat., 2009, 80(4), 860-873.

    Google Scholar

    [24] A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 2008, 57(8), 595-601.

    Google Scholar

    [25] M. E. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Diff. Eqs., 1981, 42(3), 325-352.

    Google Scholar

    [26] M. Sorin, R. Lionel and Z. Bing, Control and stabilization of a family of Boussinesq systems, Discrete. Contin. Dyn. Syst., 2009, 24(2), 273-313.

    Google Scholar

    [27] W. Walter, Gewöhnliche Differential gleichungen, Springer, New York, 1972.

    Google Scholar

Article Metrics

Article views(2209) PDF downloads(1028) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint