2017 Volume 7 Issue 2
Article Contents

Zujin Zhang, Xiqin Ouyang, Xian Yang. REFINED A PRIORI ESTIMATES FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 554-558. doi: 10.11948/2017034
Citation: Zujin Zhang, Xiqin Ouyang, Xian Yang. REFINED A PRIORI ESTIMATES FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 554-558. doi: 10.11948/2017034

REFINED A PRIORI ESTIMATES FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS

  • Fund Project:
  • In this paper, we consider the axisymmetric Navier-Stokes equations, and provide a refined a priori estimate for the swirl component of the vorticity. This extends Theorem 2 of[D. Chae, J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645{671].
    MSC: 35B65;35Q35;76D03
  • 加载中
  • [1] D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 2002, 239, 645-671.

    Google Scholar

    [2] H. Chen, D.Y. Fang and T. Zhang, Regularity of 3D axisymmetric NavierStokes equations, arXiv:1505.009052015.

    Google Scholar

    [3] Q. L. Chen and Z. F. Zhang, Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations, J. Math. Anal. Appl., 2007, 331, 1384-1395.

    Google Scholar

    [4] S. Gala, On the regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations, Nonlinear Anal., 2011, 74, 775-782.

    Google Scholar

    [5] E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen, Math. Nachr., 1951, 4, 213-321.

    Google Scholar

    [6] O. Kreml and M. Pokorný, A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations, Electron J. Differential Equations, 2007, 08, 1-10.

    Google Scholar

    [7] A. Kubica, M. Pokorný and W. Zajaczkowski, Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations, Math. Meth. Appl. Sci., 2012, 35, 360-371.

    Google Scholar

    [8] O. A. Ladyžhenskaya, On unique solvability "in the large" of three-dimensional Cauchy problem for Navier-Stokes equations with axial symmetry, Zap. Nauchn. Sem. LOMI, 1968, 7, 155-177.

    Google Scholar

    [9] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 1934, 63, 193-248.

    Google Scholar

    [10] S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in R3, Z. Anal. Anwendungen, 1999, 18, 639-649.

    Google Scholar

    [11] J. Neustupa and M. Pokorný, Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component, Math. Bohem, 2001, 126, 469-481.

    Google Scholar

    [12] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 1959, 13, 115-162.

    Google Scholar

    [13] M. Pokorný, A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations, Proceedings of the 4th European Congress on Elliptic and Parabolic Problems, Rolduc and Gaeta 2001, World Scientific 2002, 233-242.

    Google Scholar

    [14] M. R. Ukhovskii and V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 1968, 32, 52-62.

    Google Scholar

    [15] P. Zhang and T. Zhang, Global axisymmetric solutions to three-dimensional Navier-Stokes system, Int. Math. Res. Not., 2014, 3, 610-642.

    Google Scholar

    [16] L. Zhen and Q. S. Zhang, A Liouville theorem for the axially-symmetric NavierStokes equations, J. Funct. Anal., 2011, 261, 2323-2345.

    Google Scholar

Article Metrics

Article views(2310) PDF downloads(780) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint