[1]
|
A. S. Ackleh and K. Deng, A non-autonomous juvenile-adult model:wellposedness and long-time behavior via a comparison principle, SIAM J. Appl. Math., 2009, 59, 1644-1661.
Google Scholar
|
[2]
|
A. S. Ackleh, K. Deng and Q. Huang, Existence-uniqueness results and difference approximations for an amphibian juvenile-adult model, AMS Contemp. Math. Ser., 2010, 513, 1-23.
Google Scholar
|
[3]
|
A. S. Ackleh, K. Deng and Q. Huang, Stochastic juvenile-adult models with application to a green tree frog population, Journal of Biological Dynamics, 2011, 5, 64-83.
Google Scholar
|
[4]
|
A. S. Ackleh and R. A. Chiquet, Competitive exclusion in a discrete juvenileadult model with continuous and seasonal reproduction, J. Differ. Equ. Appl., 2011, 17, 955-975.
Google Scholar
|
[5]
|
A. S. Ackleh, et al, Fitting a structured juvenile-adult model for green tree frogs to population estimates from capture-mark-recapture field data, B. Math. Biol., 2012, 74, 641-665.
Google Scholar
|
[6]
|
A. S. Ackleh, K. Deng and X. Yang, Sensitivity analysis for a structured juvenileCadult model, Comput. Math. Appl., 2012, 64, 190-200.
Google Scholar
|
[7]
|
A. S. Ackleh and B. Ma, A second-order high-resolution scheme for a juvenileCadult model of amphibians, Numer. Func. Anal. Opt., 2013, 34, 365-403.
Google Scholar
|
[8]
|
S. Aniţa, Analysis and Control of Age-dependent Population Dynamics, Kluwer, Dordrecht, 2000.
Google Scholar
|
[9]
|
À. Calsina and J. Ripoll, A general structured model for a sequential hermaphrodite population, Math. Biosci., 2008, 208(2), 393-418.
Google Scholar
|
[10]
|
À. Calsina and J. Ripoll, Evolution of age-dependent sex-reversal under adaptive dynamics, J. Math. Biol., 2009, 60(2), 161-188.
Google Scholar
|
[11]
|
J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 2006, 53, 520-539.
Google Scholar
|
[12]
|
A. M. De Roos, A gentle introduction to physiologically structured population models, Structured-Population Models in Marine, Terrestrial, and Freshwater Systems Population and Community Biology, 1997, 18, 119-204.
Google Scholar
|
[13]
|
J. Z. Farkas and T. Hagen, Asymptotic behavior of size-structured population via juvenile-adult interaction, Discrete Cont. Dyn-B, 2008, 9, 249-266.
Google Scholar
|
[14]
|
R. A. Fisher, The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1930.
Google Scholar
|
[15]
|
X. Fu and D. Zhu, Stability analysis for a size-structured juvenile-adult population model, Discrete Cont. Dyn-B, 2014, 19, 391-417.
Google Scholar
|
[16]
|
M. Iannelli, Mathematical Theory of Age-structured Population Dynamics, Giardini Editori, Pisa, 1994.
Google Scholar
|
[17]
|
M. Iannelli and J. Ripoll, Two-sex age structured dynamics in a fixed sex-ratio population, Nonlinear Anal-REAL, 2012, 13, 2562-2577.
Google Scholar
|
[18]
|
T. Kostova, J. Li and M. Friedman, Two models for competition between age classes, Math. Biosci., 1999, 157, 65-89.
Google Scholar
|
[19]
|
S. Lion and M. van Baalen, The evolution of juvenile-adult interactions in populations structured in age and space, Theo. Pop. Biol., 2009, 76, 132-145.
Google Scholar
|
[20]
|
T. Schmickl and I. Karsai, The interplay of sex ratio, male success and densityindependent mortality affects population dynamics, Ecological Modelling, 2010, 221, 1089-1097.
Google Scholar
|