[1]
|
E. Beretta and D. Breda, Discrete or distributed delay:Effects on stability of population growth, Math. Biosci. Eng., 2016, 13(1), 19-41.
Google Scholar
|
[2]
|
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 2002, 33(5), 1144-1165.
Google Scholar
|
[3]
|
L. Berezansky, E. Braverman and L. Idels, Nicholson's blowflies differential equations revisited:Main results and open problems, Appl. Math. Model., 2010, 34(6), 1405-1417.
Google Scholar
|
[4]
|
K. L. Cooke, R. H. Elderkin and W. Huang, Predator-prey interactions with delays due to juvenile maturation, SIAM J. Appl. Math., 2006, 66(3), 1050-1079.
Google Scholar
|
[5]
|
K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 1994, 99(4), 332-352.
Google Scholar
|
[6]
|
G. Fan, J. Liu, P. van den Driessche, J. Wu and H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 2010, 228(2), 119-126.
Google Scholar
|
[7]
|
M.S. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 1980, 287(5777), 17-21.
Google Scholar
|
[8]
|
I. Györi and S. Trofimchuk, Global attractivity in x'(t)=dx(t) + pf(x(t -τ)), Dynam. Systems Appl., 1999, 8(2), 197-210.
Google Scholar
|
[9]
|
Z. Jiang and W. Zhang, Bifurcation analysis in single-species population model with delay, Sci. China Math., 2010, 53(6), 1475-1481.
Google Scholar
|
[10]
|
M. Kulenovic, G. Ladas and Y. Sficas, Global attractivity in Nicholson's blowflies, Appl. Anal., 1992, 43(5), 109-124.
Google Scholar
|
[11]
|
J. Li, Global attractivity in Nicholson's blowflies, Appl. Math., 1996, 11B(4), 425-436.
Google Scholar
|
[12]
|
M. Y. Li and J. Wei, Hopf bifurcation analysis in a delayed Nicholson blowflies equation, Nonlinear Anal., 2005, 60(7), 1351-1367.
Google Scholar
|
[13]
|
E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 2003, 35(3), 596-622.
Google Scholar
|
[14]
|
A.J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 1954, 2(1), 9-65.
Google Scholar
|
[15]
|
H. Shu, L. Wang and J. Wu, Global dynamics of Nicholson's blowflies equation revisited:Onset and termination of nonlinear oscillations, J. Differential equations, 3013, 255(9), 2565-2586.
Google Scholar
|
[16]
|
H.L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995.
Google Scholar
|
[17]
|
J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting SIS epidemic model with delay, J. Comput. Appl. Math., 2006, 197(1), 169-187.
Google Scholar
|
[18]
|
X.-Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl., 2001, 257(2), 282-291.
Google Scholar
|
[19]
|
C. Zheng, F. Zhang and Jianquan Li, Stability analysis of a population model with maturation delay and Ricker birth function, Abstract and Applied Analysis, 2014, 2014(3), 1-8.
Google Scholar
|