[1]
|
M. A. Aziz-Alaoui and M. D.Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 2003, 16, 1069-1075.
Google Scholar
|
[2]
|
M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci., 2012, 236, 64-76.
Google Scholar
|
[3]
|
J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616.
Google Scholar
|
[4]
|
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 1977, 197, 463-465.
Google Scholar
|
[5]
|
C. Braumann, Itô versus Stratonovich calculus in random population growth, Math. Biosci., 2007, 206, 81-107.
Google Scholar
|
[6]
|
F. Chen, L. Chen and X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 2009, 10, 2905-2908.
Google Scholar
|
[7]
|
X. Guan, W. Wang and Y. Cai, Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 2011, 12, 2385-2395.
Google Scholar
|
[8]
|
H. Guo and X. Song, An impulsive predator-prey system with modified LeslieGower and Holling type Ⅱ schemes, Chaos Solitons Fractals, 2008, 36, 1320-1331.
Google Scholar
|
[9]
|
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic diffrential equations, SIAM Rev., 2011, 43, 525-546.
Google Scholar
|
[10]
|
N. Ikeda and S. Wantanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
Google Scholar
|
[11]
|
C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 2009, 359, 482-498.
Google Scholar
|
[12]
|
C. Ji, D. Jiang and N. Shi, A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 2011, 377, 435-440.
Google Scholar
|
[13]
|
D. Q. Jiang and N. Z. Shi, A note on non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2005, 303, 164-172.
Google Scholar
|
[14]
|
X. Li and X. Mao, Population dynamical behavior of non-autonomous LotkaVolterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 2009, 24, 523-545.
Google Scholar
|
[15]
|
M. Liu, K. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 2011, 73, 1969-2012.
Google Scholar
|
[16]
|
M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal., 2013, 85, 204-213.
Google Scholar
|
[17]
|
M. Liu and C. Bai, Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 2016, 276, 301-309.
Google Scholar
|
[18]
|
M. Liu and M. Fan, Permanence of stochastic Lotka-Volterra systems, J. Nonlinear Sci., 2016, DOI:10.1007/s00332-016-9337-2.
Google Scholar
|
[19]
|
M. Liu and C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 2016, 73, 597-625.
Google Scholar
|
[20]
|
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stochastic Process. Appl., 2002, 97, 95-110.
Google Scholar
|
[21]
|
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.
Google Scholar
|
[22]
|
L. Nie, Z. Teng, L. Hu and J. Peng, Qualitative analysis of a modified LeslieGower and Holling-type Ⅱ predator-prey model with state dependent impulsive effects, Nonlinear Anal. Real World Appl. 2010, 11, 1364-1373.
Google Scholar
|
[23]
|
A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with time delay, Nonlinear Anal. Real World Appl., 2006, 7, 1104-1118.
Google Scholar
|
[24]
|
X. Song and Y. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes and impulsive effect, Nonlinear Anal. Real World Appl., 2008, 9, 64-79.
Google Scholar
|
[25]
|
Y. Tian and P. Weng, Stability analysis of diffusive predatorCprey model with modified LeslieCGower and Holling-type Ⅲ schemes, Appl. Math. Compu., 2011, 218, 3733-3745.
Google Scholar
|
[26]
|
Q. Wang, J. Zhou, Z. Wang, M. Ding and H. Zhang, Existence and attractivity of a periodic solution for a ratio-dependent Leslie system with feedback controls, Nonlinear Anal. Real World Appl., 2011, 12, 24-33.
Google Scholar
|
[27]
|
R. Yafia, F. Adnani and H. T. Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Nonlinear Anal. Real World Appl., 2008, 9, 2055-2067.
Google Scholar
|
[28]
|
J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent diffusion, Nonlinear Anal., 2013, 82, 47-65.
Google Scholar
|
[29]
|
C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 2009, 71, e1370-e1379.
Google Scholar
|