[1]
|
G. D. Anderson, M.K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 2007, 335, 1294-1308.
Google Scholar
|
[2]
|
N. S. Barnett, P. Cerone and S. S. Dragomir, Some new inequalities for Hermite-Hadamard divergence in information theory, Stochastic analysis and applications. Vol. 3, 7-19, Nova Sci. Publ., Hauppauge, NY, 2003.
Google Scholar
|
[3]
|
P. S. Bullen, Handbook of Means and Their Inequalities. Mathematics and its Applications, Dordrecht/Boston/London, 560, Kluwer Academic Publishers, 2003.
Google Scholar
|
[4]
|
P. Cerone and S. S. Dragomir, Mathematical Inequalities. A Perspective, CRC Press, Boca Raton, FL, 2011. x+391 pp. ISBN:978-1-4398-4896-8
Google Scholar
|
[5]
|
F. Chen and S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014, Article ID 386806, 6 pages.
Google Scholar
|
[6]
|
F. Chen and S. Wu, Hermite-Hadamard type inequalities for harmonically sconvex functions, Sci. World J., 2014(7), Article ID 279158.
Google Scholar
|
[7]
|
S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Typ, Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN:978-1-4614-1778-1
Google Scholar
|
[8]
|
S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 1998, 11(5), 91-95.
Google Scholar
|
[9]
|
S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs:Victoria University, 2000.
Google Scholar
|
[10]
|
L. Féjer, Über die Fourierreihen, Ⅱ, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 1906, 24, 369-390. (In Hungarian).
Google Scholar
|
[11]
|
V. N. Huy and N. T. Chung, Some generalizations of the Fejér and HermiteHadamard inequalities in Hölder spaces, J. Appl. Math. Inform., 2011, 29(3-4), 859-868.
Google Scholar
|
[12]
|
J. Hua, B. -Y. Xi and F. Qi, Hemite-Hadamard type inequalities for geometrically-arithmetically s-convex functions, Commun. Korean Math. Soc., 2014, 29(1), 51-63.
Google Scholar
|
[13]
|
J. Hua, B. -Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Appl. Math. Comput., 2014, 246, 752-760.
Google Scholar
|
[14]
|
İ. İşcan, _Hemite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, LXIX 2014, (Ⅱ), 129-146.
Google Scholar
|
[15]
|
İ. İşcan, _Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 2014, 43(6), 935-942.
Google Scholar
|
[16]
|
İ. İşcan, _Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014, Article ID 346305, 10 pages.
Google Scholar
|
[17]
|
İ. İşcan and S. Wu, _Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 2014, 238, 237-244.
Google Scholar
|
[18]
|
A. P. Ji, T. Y. Zhang and F. Qi, Integral Inequalities of Hermite-Hadamard Type for (α,m)-GA-Convex Functions, J. Funct. Space. Appl., 2013, Article ID 823856, 8 pages.
Google Scholar
|
[19]
|
M. A. Latif, New Hermite-Hadamard type integral inequalities for GA-convex functions with applications, Analysis, 2014, 34(4), 379-389.
Google Scholar
|
[20]
|
M. V. Mihai, M. A. Noor, K. I. Noor and M. U. Awan, Some integral inequalities for harmonic h-convex functions involving hypergeometric functions, Appl. Math. Comput., 2015, 252, 257-262.
Google Scholar
|
[21]
|
M. A. Noor, K. I. Noor and M. U. Awana, Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Eqn., 2014, 60(6), 776-786.
Google Scholar
|
[22]
|
M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B Sci. Bull. Serai A., 2015, 77(1), 5-16.
Google Scholar
|
[23]
|
J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications (Mathematics in Science and Engineering), Boston/San Diego/New York/London/Sydney/Tokyo/Toronto, 187, Academic Press Inc., 1992.
Google Scholar
|
[24]
|
M. Z. Sarikaya, On new Hermite Hadamard Fejér type integral inequalities, Stud. Univ. Babeş-Bolyai Math., 2012, 57(3), 377-386.
Google Scholar
|
[25]
|
Y. Shuang, H. P. Yin and F. Qi, Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions, Analysis, 2013, 33, 1001-1010.
Google Scholar
|
[26]
|
B. -Y. Xi and F. Qi, Hemite-Hadamard type inequalities for geometrically rconvex functions, Studia Sci. Math. Hungar., 2014, 51(4), 530-546.
Google Scholar
|
[27]
|
T. Y. Zhang, A. P. Ji and F. Qi, Some inequalities of Hermite-Hadamard type for GA-Convex functions with applications to means, Le Matematiche, 2013, 48(1), 229-239.
Google Scholar
|
[28]
|
T. Y. Zhang, A. P. Ji and F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions, Proceedings of Proc. Jangjeon Math. Soc., 2013, 16(3), 399-407.
Google Scholar
|