[1]
|
A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamical Systems, John Wiley and Sons, New York, 1973.
Google Scholar
|
[2]
|
K. Bellenir and P. Dresser, Contagious and Non-Contagious Infectious Diseases Sourcebook, Health Science Series 8, Omnigraphics Inc., Detroit, 1996.
Google Scholar
|
[3]
|
S. Busenberg and K. Cooke, Vertically transmitted diseases. model and Dynamics, Biomathematics 23, Springer-Verlag, New York, 1993.
Google Scholar
|
[4]
|
S. N. Chow, C. Li and D. Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, 1994.
Google Scholar
|
[5]
|
P. van den Driessche and J. Watmough, A simple SIS epidemic model with a back bifurcation, J. Math. Biol., 2000, 40, 525-540.
Google Scholar
|
[6]
|
Z. Feng and H. R. Thieme, Recent outbreaks of childhood diseases revisted:the impact of isolation, Math. Biosci., 1995, 128, 93-130.
Google Scholar
|
[7]
|
H. W. Hethcote, Three basic epidemiological model, Applied mathematical ecology (Trieste, 1986), 119-144, Biomathematics, 18, Springer, Berlin, 1989.
Google Scholar
|
[8]
|
Z. Hu, S. Liu and H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Analysis RWA, 2008, 9, 2302-2312.
Google Scholar
|
[9]
|
J. M. Hyman and J. Li, Modelling the effectiveness of isolation strategies in preventing STD epidemics, SIAM J. Appl. Math., 1998, 58, 912-925.
Google Scholar
|
[10]
|
K. Q. Lan and C. R. Zhu, Phase portraits, Hopf bifurcations and limit cycles of the Holling-Tanner model for predator-prey interactions, Nonlinear Analysis RWA, 2011, 12, 1961-1973.
Google Scholar
|
[11]
|
X. Li, W. Li and M. Ghosh, Stability and bifurcation of an SIR epidemic model with nonlinear incidence and treatment, Appl. Math. Comput., 2009, 210, 141-150.
Google Scholar
|
[12]
|
M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an SEIR epidemic with vertical transmission, SIAM J. Appl. Math., 2001, 62, 58-69.
Google Scholar
|
[13]
|
X. Meng and L. Chen, The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Appl. Math. Comput., 2008, 197, 582-597.
Google Scholar
|
[14]
|
L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1996.
Google Scholar
|
[15]
|
W. Wang and S. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 2004, 291, 775-793.
Google Scholar
|
[16]
|
L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differential Equations, 2000, 168, 150-167.
Google Scholar
|
[17]
|
D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 2006, 324, 14-29.
Google Scholar
|
[18]
|
S. Zhang, R. Xu, Global stability of a delayed ratio-dependent predator-prey model with gompertz growth for prey, J. Appl. Anal. Comput., 2015, 5, 28-37.
Google Scholar
|
[19]
|
C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 2010, 14, 289-306.
Google Scholar
|