2017 Volume 7 Issue 3
Article Contents

Armel Judice Ntsokongo. ON HIGHER-ORDER ANISOTROPIC CAGINALP PHASE-FIELD SYSTEMS WITH POLYNOMIAL NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 992-1012. doi: 10.11948/2017062
Citation: Armel Judice Ntsokongo. ON HIGHER-ORDER ANISOTROPIC CAGINALP PHASE-FIELD SYSTEMS WITH POLYNOMIAL NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 992-1012. doi: 10.11948/2017062

ON HIGHER-ORDER ANISOTROPIC CAGINALP PHASE-FIELD SYSTEMS WITH POLYNOMIAL NONLINEAR TERMS

  • Our aim in this paper is to study higher-order (in space) anisotropic Caginalp phase-field systems. In particular, we obtain well-posedness results, as well as the existence of the global attractor and exponential attractor.
    MSC: 35K55;35B41;35B45
  • 加载中
  • [1] S. Agmon, Lectures on elliptic boundary value problems, Mathematical Studies, Van Nostrand, New York, 1965.

    Google Scholar

    [2] D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractors for the phase-field model, Appl. Anal., 1993, 49(3-4), 197-212.

    Google Scholar

    [3] L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54(2), 89-115.

    Google Scholar

    [4] L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17, 107-129.

    Google Scholar

    [5] L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 2017, 7(1), 39-56.

    Google Scholar

    [6] X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Ration. Mech. Anal., 2011, 202, 349-372.

    Google Scholar

    [7] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational. Mech. Anal., 1986, 92(3), 205-245.

    Google Scholar

    [8] G. Caginalp and E. Esenturk, Anisotropic phase-field equations of arbitrary order, Discrete Contin. Dyn. Systems S, 2011, 4, 311-350.

    Google Scholar

    [9] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 1958, 258(28), 258-267.

    Google Scholar

    [10] P. J. Chen and M. E. Gutin, On a theory of heat conduction involving two temperatures, J. Appl. Math. Phys. (ZAMP), 1968, 19(4), 614-627.

    Google Scholar

    [11] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, C. R. Acad. Sci.-Series I-Math., 2000, 330(8), 713-718.

    Google Scholar

    [12] P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singulary perturbed damped wave equation, Discrete Contin. Dyn. Syst., 2004, 10, 211-238.

    Google Scholar

    [13] H. Fakih, Etude mathmatique et numrique de quelques gnralisations de l'quation de Cahn-Hilliard:Applications la retouche d'images et la biologie, PhD thesis, Universit de Poitiers, 2015.

    Google Scholar

    [14] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys., 1997, 87(1), 37-61.

    Google Scholar

    [15] M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 2014, 24(14), 2743-2783.

    Google Scholar

    [16] A. Miranville, Asymptotic behavior of a sixth-order Cahn-Hilliard system, central Europ. J. Math., 2014, 12(1), 141-154.

    Google Scholar

    [17] A. Miranville, Higher-order Anisotropic Caginalp Phase-Field systems, Mediterr. J. Math., 2016, 13(6), 4519-4535.

    Google Scholar

    [18] A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 2013, 400(1), 143-152.

    Google Scholar

    [19] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, C. M. Dafermos, M. Pokorny eds., Elsevier, Amsterdam, 2008, Volume 4, 103-200.

    Google Scholar

    [20] A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 2016, 74, 375-398.

    Google Scholar

    [21] A. Makki and A. Miranville, Well-posedness for one-dimensional Anisotropic Cahn-Hilliard and Allen-Cahn systems, Electronic Journal of Differential Equations, 2015, 2015(4), 1-15.

    Google Scholar

    [22] I. Pawlow and G. Schimperna, On a Cahn-Hilliard model with nonlinear diffusion, SIAM J. Math. Anal., 2013, 45, 31-63.

    Google Scholar

    [23] R. Quintanilla, A well-posed problem for three-dual-phase-lag heat conduction, J. Thermal Stresses, 2009, 32, 1270-1278.

    Google Scholar

    [24] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.

    Google Scholar

Article Metrics

Article views(2517) PDF downloads(1398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint