[1]
|
N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 2002, 23, 201-229.
Google Scholar
|
[2]
|
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, SpringerVerlag, New York, 1991.
Google Scholar
|
[3]
|
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 2008, 77, 1269-1291.
Google Scholar
|
[4]
|
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 2008, 75(8), 881-898.
Google Scholar
|
[5]
|
Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 2009, 42(3), 382-403.
Google Scholar
|
[6]
|
Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 2009, 39, 206-221.
Google Scholar
|
[7]
|
Y. Chen and T. Hou, Superconvergence and L∞-error estimates of RT1 mixed methods for semilinear elliptic control problems with an integral constraint, Numer. Math. Theor. Meth. Appl., 2012, 5(3), 423-446.
Google Scholar
|
[8]
|
Y. Chen, N. Yi and W. B. Liu, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 2008, 46, 2254-2275.
Google Scholar
|
[9]
|
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
Google Scholar
|
[10]
|
J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 1985, 44, 39-52.
Google Scholar
|
[11]
|
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 1973, 44, 28-47.
Google Scholar
|
[12]
|
M. D. Gunzburger and S. L. Hou, Finite dimensional approximation of a class of constrained nonlinear control problems, SIAM J. Control Optim., 1996, 34, 1001-1043.
Google Scholar
|
[13]
|
T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 1979, 13, 313-328.
Google Scholar
|
[14]
|
L. Hou and J. C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 1995, 71, 289-315.
Google Scholar
|
[15]
|
T. Hou, Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations, Numer. Methods Partial Differential Eq., 2013, 29(5), 1675-1693.
Google Scholar
|
[16]
|
G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 1982, 20, 414-427.
Google Scholar
|
[17]
|
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
Google Scholar
|
[18]
|
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 2004, 43(3), 970-985.
Google Scholar
|
[19]
|
C. Meyer and A. Rösch, L∞-error estimates for approximated optimal control problems, SIAM J. Control Optim., 2005, 44, 1636-1649.
Google Scholar
|
[20]
|
R. S. McKinght and J. Borsarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 1973, 11, 510-542.
Google Scholar
|
[21]
|
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Aspecs of the Finite Element Method, Lecture Notes in Math., Springer, Berlin, 1977, 606, 292-315.
Google Scholar
|