[1]
|
K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 1979, 16, 46-57.
Google Scholar
|
[2]
|
J. C. Butcher, Implicit Runge-Kutta method processes, Math. Comp., 1964, 18, 59-64.
Google Scholar
|
[3]
|
R. P. K. Chan, On symmetric Runge-Kutta method of high order, Computing, 1990, 45, 301-309.
Google Scholar
|
[4]
|
S. Geng, Construction of high order symplectic Runge-Kutta methods, J. Comput. Math., 1993, 11(3), 250-260.
Google Scholar
|
[5]
|
W. B. Gragg, On extrapolation algorithms for ordinary initial value problems, SIAM J. Numer. Anal., 1965, 2, 384-403.
Google Scholar
|
[6]
|
E. Hairer and G. Wanner, Algebraically stable and implementable Runge-Kutta methods of high order, SIAM J. Numer. Anal., 1981, 18, 1098-1108.
Google Scholar
|
[7]
|
E. Hairer, S. P. Norsett and G.Wanner, Solving Ordinary Differential Equations I:Non-stiff Problems, Springer-Verlag, Berlin, 1987.
Google Scholar
|
[8]
|
E. Hairer and G. Wanner, Solving Ordinary Differential Equations q:Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.
Google Scholar
|
[9]
|
E. Hairer and Ch. Lubich, Asymptotic expansions of the global error of fixedstepsize methods, Numer. Math., 1984, 45, 345-360.
Google Scholar
|
[10]
|
Z. Kalogiratou, T. Monovasilis and T. E. Simos, A diagonally implicit symplectic Runge-Kutta method with minimum phase-lag, AIP Conference Proceedings, 2011, 1389, 1977-1979.
Google Scholar
|
[11]
|
Z. Kalogiratou, T. Monovasilis and T. E. Simos, Diagonally Implicit Symplectic Runge-Kutta Method with Special Properties, AIP Conference Proceedings, 2012, 1479, 1387-1390.
Google Scholar
|
[12]
|
T. Monovasilis, Z.Kalogiratou and T. E. Simos, Construction of Exponentially Fitted Sympelctic Runge-Kutta-Nyström Methods from Partitioned RungeKutta Methods, Appl. Math. Inf. Sci., 2015, 4, 1923-1930.
Google Scholar
|
[13]
|
S. P. Norsett and G. Wanner, Perturbed collocation and Runge-Kutta methods, Numer. Math., 1981, 38, 193-208.
Google Scholar
|
[14]
|
S. Serna, Runge-Kutta methods for Hamiltonian systems, BIT, 1988, 28, 877-883.
Google Scholar
|
[15]
|
H. J. Stetter, Asymptotic expansions for the error of discretization algorithms for non-linear functional equations, Numer. Math., 1965, 7, 18-31.
Google Scholar
|
[16]
|
H. J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer, Berlin, heidelberg, New York, 1973.
Google Scholar
|
[17]
|
W. Shi and X. Wu, On symplectic and symmetric ARKN methods, Comput. Phys. Commun., 2012, 183, 1250-1258.
Google Scholar
|
[18]
|
W. Tang, Y. Sun, Construction of Runge-Kutta type methods for solving ordernary differential equations, Appl.Math.Comput., 2014, 234, 179-191.
Google Scholar
|
[19]
|
G. Wanner, A short proof on nonlinear A-stability, BIT, 1976, 15, 226-227.
Google Scholar
|
[20]
|
G. Wanner, Runge-Kutta methods with epansions in even power of h, Computing, 1973, 11, 81-85.
Google Scholar
|
[21]
|
X. Wu, B. Wang and J. Xia, Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods, BIT. Numer. Math., 2012, 52, 773-795.
Google Scholar
|