2017 Volume 7 Issue 3
Article Contents

Kaifeng Xia, Yuhao Cong, Geng Sun. SYMPLECTIC RUNGE-KUTTA METHODS OF HIGH ORDER BASED ON W-TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1185-1199. doi: 10.11948/2017074
Citation: Kaifeng Xia, Yuhao Cong, Geng Sun. SYMPLECTIC RUNGE-KUTTA METHODS OF HIGH ORDER BASED ON W-TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1185-1199. doi: 10.11948/2017074

SYMPLECTIC RUNGE-KUTTA METHODS OF HIGH ORDER BASED ON W-TRANSFORMATION

  • Fund Project:
  • In this paper, characterizations of symmetric and symplectic RungeKutta methods based on the W-transformation of Hairer and Wanner are presented. Using these characterizations, we construct two families symplectic (symmetric and algebraically stable or algebraically stable) Runge-Kutta methods of high order. Methods constructed in this way and presented in this paper include and extend the known classes of high order implicit Runge-Kutta methods.
    MSC: 65L05;65L06
  • 加载中
  • [1] K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 1979, 16, 46-57.

    Google Scholar

    [2] J. C. Butcher, Implicit Runge-Kutta method processes, Math. Comp., 1964, 18, 59-64.

    Google Scholar

    [3] R. P. K. Chan, On symmetric Runge-Kutta method of high order, Computing, 1990, 45, 301-309.

    Google Scholar

    [4] S. Geng, Construction of high order symplectic Runge-Kutta methods, J. Comput. Math., 1993, 11(3), 250-260.

    Google Scholar

    [5] W. B. Gragg, On extrapolation algorithms for ordinary initial value problems, SIAM J. Numer. Anal., 1965, 2, 384-403.

    Google Scholar

    [6] E. Hairer and G. Wanner, Algebraically stable and implementable Runge-Kutta methods of high order, SIAM J. Numer. Anal., 1981, 18, 1098-1108.

    Google Scholar

    [7] E. Hairer, S. P. Norsett and G.Wanner, Solving Ordinary Differential Equations I:Non-stiff Problems, Springer-Verlag, Berlin, 1987.

    Google Scholar

    [8] E. Hairer and G. Wanner, Solving Ordinary Differential Equations q:Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.

    Google Scholar

    [9] E. Hairer and Ch. Lubich, Asymptotic expansions of the global error of fixedstepsize methods, Numer. Math., 1984, 45, 345-360.

    Google Scholar

    [10] Z. Kalogiratou, T. Monovasilis and T. E. Simos, A diagonally implicit symplectic Runge-Kutta method with minimum phase-lag, AIP Conference Proceedings, 2011, 1389, 1977-1979.

    Google Scholar

    [11] Z. Kalogiratou, T. Monovasilis and T. E. Simos, Diagonally Implicit Symplectic Runge-Kutta Method with Special Properties, AIP Conference Proceedings, 2012, 1479, 1387-1390.

    Google Scholar

    [12] T. Monovasilis, Z.Kalogiratou and T. E. Simos, Construction of Exponentially Fitted Sympelctic Runge-Kutta-Nyström Methods from Partitioned RungeKutta Methods, Appl. Math. Inf. Sci., 2015, 4, 1923-1930.

    Google Scholar

    [13] S. P. Norsett and G. Wanner, Perturbed collocation and Runge-Kutta methods, Numer. Math., 1981, 38, 193-208.

    Google Scholar

    [14] S. Serna, Runge-Kutta methods for Hamiltonian systems, BIT, 1988, 28, 877-883.

    Google Scholar

    [15] H. J. Stetter, Asymptotic expansions for the error of discretization algorithms for non-linear functional equations, Numer. Math., 1965, 7, 18-31.

    Google Scholar

    [16] H. J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer, Berlin, heidelberg, New York, 1973.

    Google Scholar

    [17] W. Shi and X. Wu, On symplectic and symmetric ARKN methods, Comput. Phys. Commun., 2012, 183, 1250-1258.

    Google Scholar

    [18] W. Tang, Y. Sun, Construction of Runge-Kutta type methods for solving ordernary differential equations, Appl.Math.Comput., 2014, 234, 179-191.

    Google Scholar

    [19] G. Wanner, A short proof on nonlinear A-stability, BIT, 1976, 15, 226-227.

    Google Scholar

    [20] G. Wanner, Runge-Kutta methods with epansions in even power of h, Computing, 1973, 11, 81-85.

    Google Scholar

    [21] X. Wu, B. Wang and J. Xia, Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods, BIT. Numer. Math., 2012, 52, 773-795.

    Google Scholar

Article Metrics

Article views(2107) PDF downloads(1367) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint