2017 Volume 7 Issue 4
Article Contents

Nurali D. Boltaev, Abdullo R. Hayotov, Gradimir V. Milovanović, Kholmat M. Shadimetov. OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W2(m,m-1) 2 SPACE[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1233-1266. doi: 10.11948/2017076
Citation: Nurali D. Boltaev, Abdullo R. Hayotov, Gradimir V. Milovanović, Kholmat M. Shadimetov. OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W2(m,m-1) 2 SPACE[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1233-1266. doi: 10.11948/2017076

OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W2(m,m-1) 2 SPACE

  • This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the W2(m,m-1)[0,1] space for calculating Fourier coefficients. Using S. L. Sobolev's method we obtain new optimal quadrature formulas of such type for N + 1 ≥ m, where N + 1 is the number of the nodes. Moreover, explicit formulas for the optimal coefficients are obtained. We investigate the order of convergence of the optimal formula for m=1. The obtained optimal quadrature formula in the W2(m,m-1)[0,1] space is exact for exp(-x) and Pm-2(x), where Pm-2(x) is a polynomial of degree m -2. Furthermore, we present some numerical results, which confirm the obtained theoretical results
    MSC: 65D32
  • 加载中
  • [1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The Theory of Splines and Their Applications, New York-London, Academic Press, 1967.

    Google Scholar

    [2] I. Babuška, Optimal quadrature formulae, Dokl. Akad. Nauk SSSR, 1963, 149, 227-229. (Russian).

    Google Scholar

    [3] I. Babuška, M. Práger and E. Vitásek, Numerical Processes in Differential Equations, In cooperation with R. Radok. Translated from the Czech by Milada Boruvková, Státní Nakladatelství Technické Literatury, Prague,Interscience Publishers John Wiley & Sons, London-New York-Sydney, 1966.

    Google Scholar

    [4] N. S. Bakhvalov and L. G. Vasil'eva, Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures, Zh. Vychisl. Mat. Mat. Fiz., 1968, 8(1), 175-181. (Russian).

    Google Scholar

    [5] P. Blaga and G. Coman, Some problems on optimal quadrature, Stud. Univ. Babeş-Bolyai Math., 2007, 52(4), 21-44.

    Google Scholar

    [6] N. D. Boltaev, A. R. Hayotov and K. Shadimetov, Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1), Numer. Algorithms, 2016. DOI:10.1007/s11075-016-0150-7.

    Google Scholar

    [7] T. Cătinaş and G. Coman, Optimal quadrature formulas based on the φ-function method, Stud. Univ. Babeş-Bolyai Math., 2006, 51(1), 49-64.

    Google Scholar

    [8] M. A. Chakhkiev, Linear differential operators with real spectrum, and optimal quadrature formulas, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48(5), 1078-1108. (Russian).

    Google Scholar

    [9] G. Coman, Monosplines and optimal quadrature formulae in Lp, Rend. Mat. (6), 1972, 5, 567-577.

    Google Scholar

    [10] G. Coman, Quadrature formulas of Sard type, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 1972, 17(2), 73-77.

    Google Scholar

    [11] L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edinburgh, 1928, 49, 38-47.

    Google Scholar

    [12] A. O. Gel0fond, Calculus of Finite Differences, Hindustan Publishing Corp., Delhi, 1971. (Translated from the Russian, International Monographs on Advanced Mathematics and Physics).

    Google Scholar

    [13] R. W. Hamming, Numerical Methods for Scientists and Engineers, Second Edition, McGraw Hill Book Company, Inc., New York, 1973.

    Google Scholar

    [14] A. R. Hayotov, G. V. Milovanović and K. Shadimetov, On an optimal quadrature formula in the sense of Sard, Numer. Algorithms, 2011, 57(4), 487-510.

    Google Scholar

    [15] A. Iserles and S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. A, 2005, 461, 1383-1399.

    Google Scholar

    [16] P. Köhler, On the weights of Sard's quadrature formulas, Calcolo, 1988, 25, 169-186.

    Google Scholar

    [17] F. Lanzara, On optimal quadrature formulae, J. Ineq. Appl., 2000, 5, 201-225.

    Google Scholar

    [18] A. A. Maljukov and I. I. Orlov, Construction of coefficients of the best quadrature formula for the class WL2(2)(M;ON) with equally spaced nodes, optimization methods and operations research, applied mathematics, Akad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Energet. Inst. Irkutsk, 1976, 191, 174-177. (Russian).

    Google Scholar

    [19] L. F. Meyers and A. Sard, Best approximate integration formulas, J. Math. Physics, 1950, 29, 118-123.

    Google Scholar

    [20] G. V. Milovanović, Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures, Computers Math. Applic., 1998, 36(8), 19-39.

    Google Scholar

    [21] G. V. Milovanović and M. P. Stanić, Numerical integration of highly oscillating functions, in Analytic Number Theory, Approximation Theory and Special Functions (Edited by G. V. Milovanović), Springer-Verlag, New York, 2014, 613-649.

    Google Scholar

    [22] E. Novak, M. Ullrich and H. Woźniakowski, Complexity of oscillatory integration for univariate Sobolev space, Journal of Complexity, 2015, 31, 15-41.

    Google Scholar

    [23] S. Olver, Numerical Approximation of Highly Oscillatory Integrals, PhD Dissertation, University of Cambridge, 2008.

    Google Scholar

    [24] A. Sard, Best approximate integration formulas,best approximation formulas, Amer. J. Math., 1949, 71, 80-91.

    Google Scholar

    [25] I. J. Schoenberg, On monosplines of last deviation and best quadrature formulae, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 1965, 2, 144-170.

    Google Scholar

    [26] I. J. Schoenberg, On monosplines of least square deviation and best quadrature formulae Ⅱ, SIAM J. Numer. Anal., 1966, 3, 321-328.

    Google Scholar

    [27] I. J. Schoenberg and S. D. Silliman, On semicardinal quadrature formulae, Math. Comp., 1974, 28, 483-497.

    Google Scholar

    [28] K. Shadimetov, Optimal quadrature formulas in L2m(Ω) and L2m(R1), Dokl. Akad. Nauk UzSSR, 1983, 3, 5-8. (Russian).

    Google Scholar

    [29] K. Shadimetov, Weight optimal cubature formulas in Sobolev's periodic space, Siberian J. Numer. Math., 1999, 2(2), 185-196. (Russian).

    Google Scholar

    [30] K. Shadimetov, Construction of weight optimal quadrature formulas in the space L2m(0,N), Siberian J. Numer. Math., 2002, 5(3), 275-293. (Russian).

    Google Scholar

    [31] K. Shadimetov and A. R. Hayotov, Computation of coefficients of optimal quadrature formulas in the space W2(m,m-1)(0,1), Uzbek. Math. Zh., 2004, 3, 67-82. (Russian).

    Google Scholar

    [32] K. Shadimetov and A. R. Hayotov, Construction of the discrete analogue of the differential operator d2m/dx2m -d2m-2/dx2m-2, Uzbek. Math. Zh., 2004, 2, 85-95. (Russian).

    Google Scholar

    [33] K. Shadimetov and A. R. Hayotov, Optimal quadrature formulas with positive coefficients in L2m(0,1) space, J. Comput. Appl. Math., 2011, 235, 1114-1128.

    Google Scholar

    [34] K. Shadimetov and A. R. Hayotov, Optimal quadrature fromulas in the sence of sard in W2(m,m-1) space, Calcolo, 2014, 51, 211-243.

    Google Scholar

    [35] K. M. Shadimetov and A. R. Hayotov, Properties of the discrete analogue of the differential operator d2m/dx2m -d2m-2/dx2m-2, Uzbek. Math. Zh., 2004, 4, 72-83. (Russian).

    Google Scholar

    [36] K. M. Shadimetov, A. R. Hayotov and S. S. Azamov, Optimal quadrature formula in K2(P2) space, Appl. Numer. Math., 2012, 62(12), 1893-1909.

    Google Scholar

    [37] S. L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, Moscow, 1974. (Russian).

    Google Scholar

    [38] S. L. Sobolev, The coefficients of optimal quadrature formulas, in Selected works of S. L. Sobolev. Vol. I, Springer, New York, 2006, 561-566.

    Google Scholar

    [39] S. L. Sobolev and V. L. Vaskevich, The Theory of Cubature Formulas, Vol. 415 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997.

    Google Scholar

    [40] Z. Xu, G. V. Milovanović and S. Xiang, Efficient computation of highly oscillatory integrals with henkel kernel, Appl. Math. Comput., 2015, 261, 312-322.

    Google Scholar

    [41] F. Y. Zagirova, On construction of optimal quadrature formulas with equal spaced nodes, Preprint No. 25, Institute of Mathematics SD of AS of USSR, Novosibirsk 28 p, 1982. (Russian).

    Google Scholar

    [42] Z. Z. Zhamalov and K. Shadimetov, About optimal quadrature formulas, Dokl. Akademii Nauk UzSSR, 1980, 7, 3-5. (Russian).

    Google Scholar

Article Metrics

Article views(2310) PDF downloads(889) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint