[1]
|
I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys, 2002, 74(1), 99-143.
Google Scholar
|
[2]
|
D. J. Benny, Long waves in liquid film, J. Math. Phys, 1966, 45, 150-155.
Google Scholar
|
[3]
|
D. Blömker and W. W. Mohammed, Amplitude equations for SPDEs with cubic nonlinearities, Stochastics, Int. J. Probab. Stoch. Process, 2013, 85(2), 181-215.
Google Scholar
|
[4]
|
J. Burke, S. M. Houghton and E. Knobloch, Swift-Hohenberg equation with broken reflection symmetry, Phys. Rev. E, 2009, 80, 036202.
Google Scholar
|
[5]
|
P. Coullet and G. Iooss, Instabilities of one-dimensional cellular patterns, Phys. Rev. Lett, 1990, 64(8), 866-869.
Google Scholar
|
[6]
|
S. M. Cox and P. C. Matthews, New instabilities of two-dimensional rotating convection and magnetoconvection, Physica D, 2001, 149(3), 210-229.
Google Scholar
|
[7]
|
J. H. P. Dawes, Localized pattern formation with a large-scale mode:slanted snaking, SIAM J. Appl. Dyn. Syst., 2008, 7(1), 186-206.
Google Scholar
|
[8]
|
A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 2001, 50(1), 421-425.
Google Scholar
|
[9]
|
A. Doelman, R. A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Mem. Amer. Math. Soc., 2002, 155, 737.
Google Scholar
|
[10]
|
A. Doelman, G. Hek and N. Valkhoff, Stabilization by slow diffusion in a real Ginzburg-Landau system, J. Nonlin. Sci., 2004, 14(3), 237-278.
Google Scholar
|
[11]
|
S. Fauve, Pattern forming instabilities, Hydrodynamics and Nonlinear Instabilities, eds. Godréche, C. and Manneville, P. (Cambridge University Press), 1998, 387-491.
Google Scholar
|
[12]
|
G. Fibich and D. Shpigelman, Positive and necklace solitary waves on bounded domains, Physica D, 2016, 315, 13=-32.
Google Scholar
|
[13]
|
M. Ghergu, Steady-state solutions for Gierer-Meinhardt type systems with Dirichlet boundary condition, Transactions of the American Mathematical Society, 2009, 361(8), 3953-3976.
Google Scholar
|
[14]
|
K. Klepel, K. Blömker and W. W. Mohammed, Amplitude equation for the generalized Swift Hohenberg equation with noise, ZAMP-Zeitschrift fur angewandte Mathematik und Physik, 2014, 65, 1107-1126.
Google Scholar
|
[15]
|
C. P. Li and G. Chen, Bifurcation from an equilibrium of the steady state Kuramoto-Sivashinsky equation in two spatial dimensions, Int. J. Bifurcation and Chaos, 2011, 12(12), 103-114.
Google Scholar
|
[16]
|
Y. Li, Hopf bifurcation in general systems of Brusselator type, Nonlinear Anal. R. W. A., 2016, 28, 32-47.
Google Scholar
|
[17]
|
P. C. Matthews and S. M. Cox, One dimensional pattern formation with Galilean invariance near a stationary bifurcation, Phys. Rev. E, 2002, 62, 1-4.
Google Scholar
|
[18]
|
P. C. Matthews and S. M. Cox, Pattern formation with a conservation law, Nonlinearity, 2000, 13(4), 1293-1320.
Google Scholar
|
[19]
|
A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of Dynamical Systems 2(North-Holland, Amsterdam), 2002, pp. 759-834.
Google Scholar
|
[20]
|
J. Norbury, M. Winter and J. Wei, Existence and stability of singular patterns in a Ginzburg-Landau equation coupled with a mean field, Nonlinearity, 2002, 15(6), 2077-2096.
Google Scholar
|
[21]
|
L. A. Peletier and V. Rottschafer, Pattern selection of solutions of the SwiftHohenberg equation, Physica D, 2004, 194(1-2), 95-126.
Google Scholar
|
[22]
|
L. A. Peletier and J. F. Williams, Some canonical bifurcations in the SwiftHohenberg equation, SIAM J. Appl. Dyn. Syst., 2007, 6(1), 208-235.
Google Scholar
|
[23]
|
J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 1977, 15(1), 319-328.
Google Scholar
|
[24]
|
L. Shi and H. J. Gao, Bifurcation analysis of an amplitude equation, Int. J. Bifurcation and Chaos., 2013, 23(5), 1350081.
Google Scholar
|
[25]
|
B. Sandstede and Y. C. Xu, Snakes and isolas in non-reversible conservative systems, Dynamical Systems, 2012, 27(3), 317-329.
Google Scholar
|
[26]
|
A. Zippelius and E. D. Siggia, Stability of the finite-amplitude convection, Phys. Fluids, 1983, 26(10), 2905-2915.
Google Scholar
|