| [1] | A. Abdulle and Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale method, Comput. Methods Appl. Mech. Engrg., 2013, 257, 203-220. 							Google Scholar
							
						 | 
					
									| [2] | X. Cai, D. L. Cai, R. Q. Wu and K. H. Xie, High accuracy non-equidistant method for singular perturbation reaction-diffusion problem, Appl. Math. Mech., 2009, 30(2), 175-182. 							Google Scholar
							
						 | 
					
									| [3] | E. T. Chung, Y. Efendiev and W. T. Leung, Residual-driven online generalized multiscale finite element methods, J. Comput. Phys., 2015, 302, 176-190. 							Google Scholar
							
						 | 
					
									| [4] | W. N. E, B. Engquist, X. T. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods:A review, Commun. Comput. Phys., 2007, 2(3), 367-450. 							Google Scholar
							
						 | 
					
									| [5] | Y. Efendiev, J. Galvis and T. Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 2013, 251, 116-135. 							Google Scholar
							
						 | 
					
									| [6] | Y. Efendiev, R. Lazarov, M. Moon and K. Shi, A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems, Comput. Methods Appl. Mech. Engrg., 2015, 292, 243-256. 							Google Scholar
							
						 | 
					
									| [7] | P. Henning, M. Ohlberger and B. Schweizer, An adaptive multiscale finite element method, Multiscale Model. Simul., 2014, 12, 1078-1107. 							Google Scholar
							
						 | 
					
									| [8] | T. Y. Hou and P. F. Liu, Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients, Discrete Contin. Dynam. Sys. A, 2016, 36(8), 4451-4476. 							Google Scholar
							
						 | 
					
									| [9] | Y. Q. Huang, K. Jiang and N. Y. Yi, Some weighted averaging methods for gradient recovery, Adv. Appl. Math. Mech., 2012, 4(2), 131-155. 							Google Scholar
							
						 | 
					
									| [10] | Y. Q. Huang, Y. F. Su, H. Y. Wei and N. Y. Yi, Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation, Science China:Mathematics, 2013, 56(12), 2615-2630. 							Google Scholar
							
						 | 
					
									| [11] | L. J. Jiang and Q. Q. Li, Reduced multiscale finite element basis methods for elliptic PDEs with parameterized inputs, J. Comput. Appl. Math., 2016, 301, 101-120. 							Google Scholar
							
						 | 
					
									| [12] | S. Jiang and Y. Q. Huang, Numerical investigation on the boundary conditions for the multiscale base functions, Commun. Comput. Phys., 2009, 5(5), 928-941. 							Google Scholar
							
						 | 
					
									| [13] | S. Jiang, M. Presho and Y. Q. Huang, An adapted Petrov-Galerkin multiscale finite element for singularly perturbed reaction-diffusion problems, Inter. J. Comput. Math., 2016, 93(7), 1200-1211. 							Google Scholar
							
						 | 
					
									| [14] | J. Kevorkian, and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York, 1996. 							Google Scholar
							
						 | 
					
									| [15] | R. C. Lin and M. Stynes, A balanced finite element method for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 2012, 50(5), 2729-2743. 							Google Scholar
							
						 | 
					
									| [16] | N. Madden and S. Russell, A multiscale sparse grid finite element method for a two-dimensional singularly perturbed reaction-diffusion problem, Adv. Comput. Math., 2015, 41, 987-1014. 							Google Scholar
							
						 | 
					
									| [17] | J. J. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems (revised edition), World Scientific, Singapore, 2012. 							Google Scholar
							
						 | 
					
									| [18] | A. Muntean and M. N. Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl., 2010, 371(2), 705-718. 							Google Scholar
							
						 | 
					
									| [19] | M. Presho and J. Galvis, A mass conservative generalized multiscale finite element method applied to two-phase flow in heterogeneous porous media, J. Comput. Appl. Math., 2016, 296, 376-388. 							Google Scholar
							
						 | 
					
									| [20] | K. Sharma, P. Rai and K. C. Patidar, A review on singularly perturbed differential equations with turning points and interior layers, Appl. Math. Comput., 2013, 219(22), 10575-10609. 							Google Scholar
							
						 | 
					
									| [21] | G. I. Shishkin, A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation, Numer. Math. Theor. Meth. Appl., 2008, 1(2), 214-234. 							Google Scholar
							
						 | 
					
									| [22] | F. Song, W. B. Deng and H. J. Wu, A combined finite element and oversampling multiscale Petrov-Galerkin method for the multiscale elliptic problems with singularities, J. Comput. Phys., 2016, 305, 722-743. 							Google Scholar
							
						 | 
					
									| [23] | M. L. Sun and S. Jiang, Multiscale basis functions for singular perturbation on adaptively graded meshes, Advan. Appl. Math. Mech., 2014, 6(5), 604-614. 							Google Scholar
							
						 |