| [1] | L. A. Cherkas, The number of limit cycles of a certain second order autonumous system (Russian), Differencial'nye Uravnenija, 1976, 12, 944-946. 							Google Scholar
							
						 | 
					
									| [2] | L. A. Cherkas, Conditions for the equation yy'=∑i=03 pi(x)yi to have a centre, Differential Equations, 1978, 14, 1133-1138. 							Google Scholar
							
						 | 
					
									| [3] | C. J. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 1999, 229, 319-329. 							Google Scholar
							
						 | 
					
									| [4] | C. J. Christopher and N. G. Lloyd, On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems, Bull. London Math. Soc., 1990, 22(1), 5-12. 							Google Scholar
							
						 | 
					
									| [5] | W. Decker, S. Laplagne, G. Pfister and H. A. Schonemann, SINGULAR, 3-1 library for computing the prime decomposition and radical of ideals, primdec.lib, 2010. 							Google Scholar
							
						 | 
					
									| [6] | P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomials, J. Symbolic Comput., 1988, 6, 146-167. 							Google Scholar
							
						 | 
					
									| [7] | J. Giné, Conditions for the existence of a center for the Kukles homogenenous systems, Comput. Math. Appl., 2002, 43(10-11), 1261-1269. 							Google Scholar
							
						 | 
					
									| [8] | J. Giné, J. LLibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. London Math. Soc., 2015, 47(2), 315-324. 							Google Scholar
							
						 | 
					
									| [9] | X. Jin and D. Wang, On the conditions of Kukles for the existence of a centre, Bull. London Math. Soc., 1990, 22, 1-4. 							Google Scholar
							
						 | 
					
									| [10] | I. S. Kukles, Sur quelques cas de distinction entre un foyer et un centre, Dokl. Akad. Nauk. SSSR, 1944, 42, 208-211. 							Google Scholar
							
						 | 
					
									| [11] | N. G. Lloyd and J. M. Pearson, Conditions for a centre and the bifurcation of limit cycles, in Bifurcations of Planar Vector Fields, J.P. Françoise, R. Roussarie (Eds.), Lecture Notes Math., vol. 1455, Springer, 1990, 230-242. 							Google Scholar
							
						 | 
					
									| [12] | N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comp. Appl. Math., 1992, 40(3), 323-336. 							Google Scholar
							
						 | 
					
									| [13] | J. M. Pearson and N. G. Lloyd, Kukles revisited:advances in computing techniques, Comput. Math. Appl., 2010, 60(10), 2797-2805. 							Google Scholar
							
						 | 
					
									| [14] | R. Pons and N. Salih, Center conditions for a lopsided quintic polynomial vector field, Qual. Theory Dyn. Syst., 2002, 3, 331-343. 							Google Scholar
							
						 | 
					
									| [15] | A. P. Sadovskii, Solution of the center and focus problem for a cubic system of nonlinear oscillations, Differential Equations, 1997, 33, 236-244. 							Google Scholar
							
						 | 
					
									| [16] | N. Salih and R. Pons, Center conditions for a lopsided quartic polynomial vector field, Bull. Sci. Math., 2002, 42(5), 369-378. 							Google Scholar
							
						 | 
					
									| [17] | A. S. Shubè, On the Kukles and Cherkas center conditions for a cubic system, Differential Equations 1993, 29, 625-627. 							Google Scholar
							
						 | 
					
									| [18] | E. P. Volokitin and V. V. Ivanov, Isochronicity and Commutation of polynomial vector fields, Siberian Mathematical Journal, 1999, 40, 22-37. 							Google Scholar
							
						 |