|
[1]
|
F. Bigolin, Regularity results for a class of obstacle problems in Heisenberg groups, Appl. Math., 2013, 58(5), 531-554.
Google Scholar
|
|
[2]
|
M. Bramanti, An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Cham:Springer, 2014.
Google Scholar
|
|
[3]
|
W. L. Chow, Über systeme von linearen partiellen differentialgleichungen erster Ordnung, Math. Ann., 1939, 117, 98-105.
Google Scholar
|
|
[4]
|
D. Danielli, Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana Univ. Math. J., 1995, 44(1), 269-286.
Google Scholar
|
|
[5]
|
D. Danielli, N. Garofalo and A. Petrosyan, The sub-elliptic obstacle problem:C1,α regularity of the free boundary in Carnot groups of step two, Adv. Math., 2007, 211(2), 485-516.
Google Scholar
|
|
[6]
|
D. Danielli, N. Garofalo and N. C. Phuc, Inequalities of Hardy-Sobolev type in Carnot-Carathéodory spaces, in Sobolev spaces in mathematics. I:Sobolev type inequalities, Springer, New York, 2009, 117-151.
Google Scholar
|
|
[7]
|
Y. Dong and P. Niu, Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems, J. Funct. Anal., 2016, 270(7), 2383-2414.
Google Scholar
|
|
[8]
|
G. Du and J. Han, Global higher integrability for very weak solutions to nonlinear subelliptic equations, Bound. Value Probl., 2017. DOI:10.1186/s13661-017-0825-6.
Google Scholar
|
|
[9]
|
G. Du and F. Li, Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients, J. Inequal. Appl., 2018. DOI:10.1186/s13660-018-1647-5.
Google Scholar
|
|
[10]
|
G. Du and P. Niu, Higher integrability for very weak solutions of obstacle problems to nonlinear subelliptic equations, Acta Math. Sci., Ser. A, Chin. Ed., 2017, 37(1), 122-145.
Google Scholar
|
|
[11]
|
X. Du and Z. Zhao, Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems, Appl. Math. Comput., 2008, 198(2), 487-493.
Google Scholar
|
|
[12]
|
Y. Feng and C. Liu, Stability of steady-state solutions to Navier-Stokes-Poisson systems, J. Math. Anal. Appl., 2018, 462(2), 1679-1694.
Google Scholar
|
|
[13]
|
D. Giachetti and R. Schianchi, Boundary higher integrability for the gradient of distributional solutions of nonlinear systems, Stud. Math., 1997, 123(2), 175-184.
Google Scholar
|
|
[14]
|
P. Haj lasz and P. Koskela, Sobolev met Poincaré, Mem. Am. Math. Soc., 2000, 145(688), x+101.
Google Scholar
|
|
[15]
|
L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 1967, 119, 147-171.
Google Scholar
|
|
[16]
|
T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 1994, 23(7), 899-909.
Google Scholar
|
|
[17]
|
F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system, J. Differ. Equations, 2010, 249(6), 1241-1257.
Google Scholar
|
|
[18]
|
F. Li and Y. Bao, Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition, J. Dyn. Control Syst., 2017, 23(2), 301-315.
Google Scholar
|
|
[19]
|
F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385(2), 1005-1014.
Google Scholar
|
|
[20]
|
F. Li, Z. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal., Real World Appl., 2011, 12(3), 1759-1773.
Google Scholar
|
|
[21]
|
G. Li and O. Martio, Local and global integrability of gradients in obstacle problems, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1994, 19(1), 25-34.
Google Scholar
|
|
[22]
|
G. Li and O. Martio, Stability and higher integrability of derivatives of solutions in double obstacle problems, J. Math. Anal. Appl., 2002, 272(1), 19-29.
Google Scholar
|
|
[23]
|
X. Lin and Z. Zhao, Existence and uniqueness of symmetric positive solutions of 2n-order nonlinear singular boundary value problems, Appl. Math. Lett., 2013, 26(7), 692-698.
Google Scholar
|
|
[24]
|
C. Liu and Y. Peng, Stability of periodic steady-state solutions to a nonisentropic Euler-Maxwell system, Z. Angew. Math. Phys., 2017, 68(5), 1-17.
Google Scholar
|
|
[25]
|
C. Liu and Y. Peng, Convergence of a non-isentropic EulerCPoisson system for all time, J. Math. Pures Appl., 2018. DOI:10.1016/j.matpur.2017.07.017.
Google Scholar
|
|
[26]
|
G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoam., 1992, 8(3), 367-439.
Google Scholar
|
|
[27]
|
S. Marchi, Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group, Matematiche, 2001, 56(1), 109-127.
Google Scholar
|
|
[28]
|
A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields. I:Basic properties, Acta Math., 1985, 155, 103-147.
Google Scholar
|
|
[29]
|
H. Yu and S. Zheng, Morrey estimates for subelliptic p-Laplace type systems with VMO coefficients in Carnot groups, Electron. J. Differ. Equ., 2016, 2016(33), 1-14.
Google Scholar
|
|
[30]
|
A. Zatorska-Goldstein, Very weak solutions of nonlinear subelliptic equations, Ann. Acad. Sci. Fenn., Math., 2005, 30(2), 407-436.
Google Scholar
|
|
[31]
|
Z. Zhao and F. Li, Existence and uniqueness of positive solutions for some singular boundary value problems with linear functional boundary conditions, Acta Math. Sin., Engl. Ser., 2011, 27(10), 2073-2084.
Google Scholar
|