2018 Volume 8 Issue 4
Article Contents

Lizhen Chen. CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1050-1060. doi: 10.11948/2018.1050
Citation: Lizhen Chen. CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1050-1060. doi: 10.11948/2018.1050

CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS

  • Fund Project:
  • An efficient semi-implicit spectral method is implemented to solve the Cahn-Hilliard equation with a variable mobility in this paper. We compared the kinetics of bulk-diffusion-dominated and interface-diffusion-dominated coarsening in two-phase systems. As expected, the interface-diffusion-controlled coarsening evolves much slower. Also we find that the velocity field will be caused different greatly by using Singular Cahn-Hilliard equation and using Cahn-Hilliard in the simulation of immiscible binary fluids.
    MSC: 65M06;65M12;65N30;65N35;76A05
  • 加载中
  • [1] H. M. Aurora, R. Toral, A. M. Lacasta and J. M. Sancho, Effects of domain morphology in phase-separation dynamics at low temperature, Phys. Rev. B, 1993, 48, 6854-6857.

    Google Scholar

    [2] D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, 1998, 30, 139-165.

    Google Scholar

    [3] J. W. Barrett, J. F. Blowey and H. Garcke, On fully practical finite element approximations of degenerate Cahn-Hilliard systems, Math. Model. Numer. Anal., 2001, 35(4), 713-748.

    Google Scholar

    [4] A. Chakrabarti, R. Toral and J. D. Gunton, Late-stage coarsening for offcritical quenches:Scaling functions and the growth law, Phys. Rev. E, 1993, 47(5), 3025.

    Google Scholar

    [5] B. Costa, W. S. Don, D. Gottlieb and R. Sendersky, Two-dimensional multidomain hybrid spectral-WENO methods for conservation laws, Commun, Comput. Phys., 2006, 1(3), 548-574.

    Google Scholar

    [6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 1958, 28, 258-267.

    Google Scholar

    [7] L. Q. Chen, Phase-field models for microstructure evolution, Annual Review of Material Research, 2002, 32, 113-140.

    Google Scholar

    [8] L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase-field equations, Comput. Phys. Comm., 1998, 108, 147-158.

    Google Scholar

    [9] Q. Du, B. Y. Guo and J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. Numer. Anal., 2002, 39(3), 735-762.

    Google Scholar

    [10] Q. Du, C. Liu and X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys, 2005, 212, 757-777.

    Google Scholar

    [11] C. L. Emmott and A. J. Bray, Lifshitz-Slyozov scaling for late-stage coarsening with an order-parameter-dependent mobility, Phys. Rev. B, 1995, 52(2), 685-688.

    Google Scholar

    [12] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comput., 1992, 58(198), 603-630.

    Google Scholar

    [13] C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 1986, 96(4), 339-357.

    Google Scholar

    [14] D. A. French and C. M. Elliott, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA Journal of Applied Mathematics, 1987, 38(2), 97-128.

    Google Scholar

    [15] D. A. French and C. M. Elliott, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 1989, 26(4), 884-903.

    Google Scholar

    [16] D. Furihata, A stable and conservative finite difference scheme for the CahnHilliard equation, Numer. Math., 2001, 87(4), 675-699.

    Google Scholar

    [17] Y. N. He, Y. X. Liu and T. Tang, On large time-stepping methods for the cahn-hilliard equation, Appl. Numer. Math., 2007, 57(5), 616-628.

    Google Scholar

    [18] T. Küpper and N. Masbaum, Simulation of particle growth and ostwald ripening via the cahn-hilliard equation, Acta metallurgica et materialia, 1994, 42(6), 1847-1858.

    Google Scholar

    [19] A. M. Lacasta, A. Hernández-Machado, J. M. Sancho and R. Toral, Domain growth in binary mixtures at low temperatures, Phys. Rev. B, 1992, 45, 5276-5281.

    Google Scholar

    [20] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 2003, 179(3), 211-228.

    Google Scholar

    [21] C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Rational Mech. Anal., 2001, 159(3), 229-252.

    Google Scholar

    [22] J. Lowengrub and L. Truskinovsky, Quasi-incompressible cahn-hilliard fluids and topological transitions, Proc. R. Soc. Lond. A, 1998, 454, 2617-2654.

    Google Scholar

    [23] T. M. Rogers and R. C. Desai, Numerical study of late-stage coarsening for off-critical quenches in the cahn-hilliard equation of phase separation, Phys. Rev. B, 1989, 39(16), 11956.

    Google Scholar

    [24] X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinchingoff and drop formation using an energetic variational phase-field method, J. Comput. Phys., 2006, 218, 417-428.

    Google Scholar

    [25] P. Yue, J. J. Feng, C. Liu and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 2004, 515, 293-317.

    Google Scholar

Article Metrics

Article views(2210) PDF downloads(702) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint