2018 Volume 8 Issue 4
Article Contents

Jimin Zhang, Liu Yang, Meng Fan, Ming Chen. NONLINEAR PERTURBATIONS FOR LINEAR NONAUTONOMOUS IMPULSIVE DIFFERENTIAL EQUATIONS AND NONUNIFORM (H,K,µ,ν)-DICHOTOMY[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1085-1107. doi: 10.11948/2018.1085
Citation: Jimin Zhang, Liu Yang, Meng Fan, Ming Chen. NONLINEAR PERTURBATIONS FOR LINEAR NONAUTONOMOUS IMPULSIVE DIFFERENTIAL EQUATIONS AND NONUNIFORM (H,K,µ,ν)-DICHOTOMY[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1085-1107. doi: 10.11948/2018.1085

NONLINEAR PERTURBATIONS FOR LINEAR NONAUTONOMOUS IMPULSIVE DIFFERENTIAL EQUATIONS AND NONUNIFORM (H,K,µ,ν)-DICHOTOMY

  • Fund Project:
  • We explore nonlinear perturbations of a flow generated by a linear nonautonomous impulsive differential equation x'=A(t)x,tτi,∆x|t=τi=Bix(τi),i ∈ Z in Banach spaces. Here we assume that the linear nonautonomous impulsive equation admits a more general dichotomy on R called the nonuniform (h,k,µ,ν)-dichotomy, which extends the existing uniform or nonuniform dichotomies and is related to the theory of nonuniform hyperbolicity. Under nonlinear perturbations, we establish a new version of the GrobmanHartman theorem and construct stable and unstable invariant manifolds for nonlinear nonautonomous impulsive differential equations x'=A(t)x+f(t,x), tτi,∆x|t=τi=Bix(τi) + gi(x(τi)),i ∈ Z with the help of nonuniform (h,k,µ,ν)-dichotomies.
    MSC: 34D09;37D10;34A37
  • 加载中
  • [1] D. Bainov and P. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, Longman Scientific and Technical, Harlow, 1993.

    Google Scholar

    [2] D. Bainov, S. I. Kostadinov, N. V. Minh and P. P. Zabreiko, Topological equivalence and exponential dichotomy of linear impulsive equations, Int. J. Theor. Phys., 1994, 33, 1581-1597.

    Google Scholar

    [3] L. Baratchart, M. Chyba and J. B. Pomet, A Grobman-Hartman theorem for control systems, J. Dyn. Differ. Equ., 2007, 19, 75-107.

    Google Scholar

    [4] L. Barreira, M. Fan, C. Valls and J. M. Zhang, Invariant manifolds for impulsive equations and nonuniform polynomial dichotomies, J. Statist. Phys., 2010, 141, 179-200.

    Google Scholar

    [5] L. Barreira and C. Valls, Stable manifolds for impulsive equations under nonuniform hyperbolicity, J. Dyn. Differ. Equ., 2010, 22, 761-785.

    Google Scholar

    [6] L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math., vol. 1926, Springer-Verlag, Berlin-New York, 2008.

    Google Scholar

    [7] A. Bento and C. Silva, Nonuniform dichotomic behavior:Lipschitz invariant manifolds for ODEs, Bull. Sci. Math., 2014, 138, 89-109.

    Google Scholar

    [8] J. F. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 2013, 137, 1031-1047.

    Google Scholar

    [9] J. F. Chu, F. F. Liao, S. Siegmund, Y. H. Xia and W. N. Zhang, Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 2015, 139, 538-557.

    Google Scholar

    [10] J. L. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Analysis TMA, 1999, 38, 307-325.

    Google Scholar

    [11] J. L. Fenner and M. Pinto, On (h,k) manifolds with asymptotic phase, J. Math. Anal. Appl., 1997, 216, 549-568.

    Google Scholar

    [12] D. Grobman, Topological classification of neighborhoods of a singularity in nspace, Mat. Sb. N. S., 1962, 56, 77-94.

    Google Scholar

    [13] P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 1963, 14, 568-573.

    Google Scholar

    [14] N. T. Huy, Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line, J. Math. Anal. Appl., 2009, 354, 372-386.

    Google Scholar

    [15] N. T. Huy, Invariant manifolds of admissible classes for semi-linear evolution equations, J. Differential Equations, 2009, 246, 1820-1844.

    Google Scholar

    [16] J. Kurzweil, Topological equivalence and structural stability for linear difference equations, J. Differential Equations, 1991, 8989-94.

    Google Scholar

    [17] V. Lakshmikanthan, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Google Scholar

    [18] N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh Math., 2014, 174, 265-284.

    Google Scholar

    [19] M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integr. Equ. Oper. Theory, 2002, 44, 71-78.

    Google Scholar

    [20] R. Naulin and M. Pinto, Roughness of (h,k)-dichotomies, J. Differential Equations, 1995, 118, 20-35.

    Google Scholar

    [21] K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 1973, 41, 753-758.

    Google Scholar

    [22] G. Papaschinopoulos and J. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 1987, 127, 530-539.

    Google Scholar

    [23] L. Popescu, A topological classification of linear differential equations on Banach spaces, J. Differential Equations, 2004, 203, 28-37.

    Google Scholar

    [24] C. Preda, P. Preda and C. Praţa, An extension of some theorems of L. Barreira and C. Valls for the nonuniform exponential dichotomous evolution operators, J. Math. Anal. Appl., 2012, 388, 1090-1106.

    Google Scholar

    [25] A. Reinfelds, Dynamical equivalence of impulsive differential equations, Nonlinear Analysis TMA, 1997, 30, 2743-2752.

    Google Scholar

    [26] A. Reinfelds, A reduction theorem for systems of differential equations with impulse effect in a Banach space, J. Math. Anal. Appl., 1996, 203, 187-210.

    Google Scholar

    [27] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

    Google Scholar

    [28] A. Sasu, M. G. Babuţia and B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 2013, 137, 466-484.

    Google Scholar

    [29] Y. H. Xia, R. T. Wang, K. I. Kou and D. O'Regan, On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 2015, 139, 829-846.

    Google Scholar

    [30] Y. H. Xia, X. D. Chen and V. G. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 2013, 400, 439-451.

    Google Scholar

    [31] Y. H. Xia, J. D. Cao and M. A. Han, A new analytical method for the linearization of dynamic equation on measure chains, J. Differential Equations, 2007, 235, 527-543.

    Google Scholar

    [32] J. M. Zhang, M. Fan and X. Y. Chang, Nonlinear perturbations of nonuniform exponential dichotomy on measure chains, Nonlinear Analysis TMA, 2012, 75, 670-683.

    Google Scholar

    [33] J. M. Zhang, M. Fan and X. Y. Chang, Parameter dependence of stable manifolds for nonuniform (µ,ν)-dichotomies, Acta Math. Sin., 2013, 29, 1111-1130.

    Google Scholar

    [34] J. M. Zhang, X. Y. Chang and J. L. Wang, Existence and robustness of nonuniform (h,k,µ,ν)-dichotomies for nonautonomous impulsive differential equations, J. Math. Anal. Appl., 2013, 400, 710-723.

    Google Scholar

    [35] J. M. Zhang, M. Fan and H. P. Zhu, Nonuniform (h,k,µ,ν)-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 2017, 452, 505-551.

    Google Scholar

    [36] L. F. Zhou, K. N. Lu and W. N. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, 2017, 262, 682-747.

    Google Scholar

Article Metrics

Article views(1995) PDF downloads(550) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint