[1]
|
D. Bainov and P. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, Longman Scientific and Technical, Harlow, 1993.
Google Scholar
|
[2]
|
D. Bainov, S. I. Kostadinov, N. V. Minh and P. P. Zabreiko, Topological equivalence and exponential dichotomy of linear impulsive equations, Int. J. Theor. Phys., 1994, 33, 1581-1597.
Google Scholar
|
[3]
|
L. Baratchart, M. Chyba and J. B. Pomet, A Grobman-Hartman theorem for control systems, J. Dyn. Differ. Equ., 2007, 19, 75-107.
Google Scholar
|
[4]
|
L. Barreira, M. Fan, C. Valls and J. M. Zhang, Invariant manifolds for impulsive equations and nonuniform polynomial dichotomies, J. Statist. Phys., 2010, 141, 179-200.
Google Scholar
|
[5]
|
L. Barreira and C. Valls, Stable manifolds for impulsive equations under nonuniform hyperbolicity, J. Dyn. Differ. Equ., 2010, 22, 761-785.
Google Scholar
|
[6]
|
L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math., vol. 1926, Springer-Verlag, Berlin-New York, 2008.
Google Scholar
|
[7]
|
A. Bento and C. Silva, Nonuniform dichotomic behavior:Lipschitz invariant manifolds for ODEs, Bull. Sci. Math., 2014, 138, 89-109.
Google Scholar
|
[8]
|
J. F. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 2013, 137, 1031-1047.
Google Scholar
|
[9]
|
J. F. Chu, F. F. Liao, S. Siegmund, Y. H. Xia and W. N. Zhang, Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 2015, 139, 538-557.
Google Scholar
|
[10]
|
J. L. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Analysis TMA, 1999, 38, 307-325.
Google Scholar
|
[11]
|
J. L. Fenner and M. Pinto, On (h,k) manifolds with asymptotic phase, J. Math. Anal. Appl., 1997, 216, 549-568.
Google Scholar
|
[12]
|
D. Grobman, Topological classification of neighborhoods of a singularity in nspace, Mat. Sb. N. S., 1962, 56, 77-94.
Google Scholar
|
[13]
|
P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 1963, 14, 568-573.
Google Scholar
|
[14]
|
N. T. Huy, Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line, J. Math. Anal. Appl., 2009, 354, 372-386.
Google Scholar
|
[15]
|
N. T. Huy, Invariant manifolds of admissible classes for semi-linear evolution equations, J. Differential Equations, 2009, 246, 1820-1844.
Google Scholar
|
[16]
|
J. Kurzweil, Topological equivalence and structural stability for linear difference equations, J. Differential Equations, 1991, 8989-94.
Google Scholar
|
[17]
|
V. Lakshmikanthan, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
Google Scholar
|
[18]
|
N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh Math., 2014, 174, 265-284.
Google Scholar
|
[19]
|
M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integr. Equ. Oper. Theory, 2002, 44, 71-78.
Google Scholar
|
[20]
|
R. Naulin and M. Pinto, Roughness of (h,k)-dichotomies, J. Differential Equations, 1995, 118, 20-35.
Google Scholar
|
[21]
|
K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 1973, 41, 753-758.
Google Scholar
|
[22]
|
G. Papaschinopoulos and J. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 1987, 127, 530-539.
Google Scholar
|
[23]
|
L. Popescu, A topological classification of linear differential equations on Banach spaces, J. Differential Equations, 2004, 203, 28-37.
Google Scholar
|
[24]
|
C. Preda, P. Preda and C. Praţa, An extension of some theorems of L. Barreira and C. Valls for the nonuniform exponential dichotomous evolution operators, J. Math. Anal. Appl., 2012, 388, 1090-1106.
Google Scholar
|
[25]
|
A. Reinfelds, Dynamical equivalence of impulsive differential equations, Nonlinear Analysis TMA, 1997, 30, 2743-2752.
Google Scholar
|
[26]
|
A. Reinfelds, A reduction theorem for systems of differential equations with impulse effect in a Banach space, J. Math. Anal. Appl., 1996, 203, 187-210.
Google Scholar
|
[27]
|
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
Google Scholar
|
[28]
|
A. Sasu, M. G. Babuţia and B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 2013, 137, 466-484.
Google Scholar
|
[29]
|
Y. H. Xia, R. T. Wang, K. I. Kou and D. O'Regan, On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 2015, 139, 829-846.
Google Scholar
|
[30]
|
Y. H. Xia, X. D. Chen and V. G. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 2013, 400, 439-451.
Google Scholar
|
[31]
|
Y. H. Xia, J. D. Cao and M. A. Han, A new analytical method for the linearization of dynamic equation on measure chains, J. Differential Equations, 2007, 235, 527-543.
Google Scholar
|
[32]
|
J. M. Zhang, M. Fan and X. Y. Chang, Nonlinear perturbations of nonuniform exponential dichotomy on measure chains, Nonlinear Analysis TMA, 2012, 75, 670-683.
Google Scholar
|
[33]
|
J. M. Zhang, M. Fan and X. Y. Chang, Parameter dependence of stable manifolds for nonuniform (µ,ν)-dichotomies, Acta Math. Sin., 2013, 29, 1111-1130.
Google Scholar
|
[34]
|
J. M. Zhang, X. Y. Chang and J. L. Wang, Existence and robustness of nonuniform (h,k,µ,ν)-dichotomies for nonautonomous impulsive differential equations, J. Math. Anal. Appl., 2013, 400, 710-723.
Google Scholar
|
[35]
|
J. M. Zhang, M. Fan and H. P. Zhu, Nonuniform (h,k,µ,ν)-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 2017, 452, 505-551.
Google Scholar
|
[36]
|
L. F. Zhou, K. N. Lu and W. N. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, 2017, 262, 682-747.
Google Scholar
|