2018 Volume 8 Issue 1
Article Contents

Fengjie Geng, Ting Wang, Xingbo Liu. GLOBAL BIFURCATIONS NEAR A DEGENERATE HETERODIMENSIONAL CYCLE[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 123-151. doi: 10.11948/2018.123
Citation: Fengjie Geng, Ting Wang, Xingbo Liu. GLOBAL BIFURCATIONS NEAR A DEGENERATE HETERODIMENSIONAL CYCLE[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 123-151. doi: 10.11948/2018.123

GLOBAL BIFURCATIONS NEAR A DEGENERATE HETERODIMENSIONAL CYCLE

  • Fund Project:
  • This article is devoted to investigating the bifurcations of a heterodimensional cycle with orbit flip and inclination flip, which is a highly degenerate singular cycle. We show the persistence of the heterodimensional cycle and the existence of bifurcation surfaces for the homoclinic orbits or periodic orbits. It is worthy to mention that some new features produced by the degeneracies that the coexistence of heterodimensional cycles and multiple periodic orbits are presented as well, which is different from some known results in the literature. Moreover, an example is given to illustrate our results and clear up some doubts about the existence of the system which has a heterodimensional cycle with both orbit flip and inclination flip. Our strategy is based on moving frame, the fundamental solution matrix of linear variational system is chose to be an active local coordinate system along original heterodimensional cycle, which can clearly display the non-generic properties-"orbit flip" and "inclination flip" for some sufficiently large time.
    MSC: 34C23;34C37;37C29
  • 加载中
  • [1] A. Algaba, E. Freire, E. Gamero and A. J. Rodrguez-Luis, A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dynam, 2000, 22(3), 249-269.

    Google Scholar

    [2] F. Battelli and K. Palmer, A remark about Sil'nikov saddle-focus homoclinic orbits, Commun on pure and appl. anal., 2012, 10(3), 817-830.

    Google Scholar

    [3] C. Bonatti, L. Diaz, E. Pujals, and J. Rocha, Robust transitivity and heterodimensional cycles, Asterisqu, 2003, 286, 187-222.

    Google Scholar

    [4] V. Bykov, The bifurcations of separatrix contours and chaos, Phys. D, 1993, 62(1), 290-299.

    Google Scholar

    [5] V. Bykov, Orbits structure in a neighborhoood of a separatrix cycle containing two saddlefoci, Amer. Math. Soc. Trans., 2000, 200, 87-97.

    Google Scholar

    [6] A. Champneys, J. Härterich and B. Sandstede, A non-transverse homoclinic orbit to a saddle-node equilibrium, Ergod. Theor. Dyn. Syst., 1996, 16(3), 431-450.

    Google Scholar

    [7] S. Chow, B. Deng and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dyn. Syst. Diff. Eq., 1990, 2(2), 177-244.

    Google Scholar

    [8] L. Diaz and J. Rocha, Heterodimensional cycles, partial hyperbolity and limit dynamics, Fund. Math., 2002, 174(2), 127-186.

    Google Scholar

    [9] M. F ečkan and J. Gruendler, Homoclinic-Hopf interaction:an autoparametric bifurcation, Proc. Roy. Soc. Edinburgh, 2000, 130(5), 999-1015.

    Google Scholar

    [10] F. Fernández-Sánchez, E. Freire and A. Rodríguez-Luis, Bi-spiraling homoclinic curves around a T-point in Chuas circuit, Int. J. Bifur. Chaos, 2004, 14(5), 1789-1793.

    Google Scholar

    [11] F. Fernández-Sánchez, E. Freire and A. Rodríguez-Luis, Analysis of the Tpoint-Hopf bifurcation, Physica D, 2008, 237(3), 292-305.

    Google Scholar

    [12] F. Geng, D. Zhu and Y. Xu, Bifurcations of heterodimensional cyces with two saddle points, Chaos, Solitons & Fractals, 2009, 39(5), 2063-2075.

    Google Scholar

    [13] M. Han, J. Yang, D. Xiao, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle, International J. Bifur. Chaos, 2012, 22(8), 1250189.

    Google Scholar

    [14] J. Lamb, M. Teixeira and N. Kevin, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3, J. Diff. Eqs., 2005, 219(1), 78-115.

    Google Scholar

    [15] X. Lin, Using Melnikov's methods to solve Shil'nikov's problems, Proc. Royal Soc. Edinburgh, 1990, 116(A), 295-325.

    Google Scholar

    [16] X. Lin and C. Zhu, Codiagonalization of matrices and existence of multiple homoclinic solutions, J. Appl. Anal. Comput., 2017, 7(1), 172-188.

    Google Scholar

    [17] D. Liu, S. Ruan, and D. Zhu, Nongeneric bifurcations near Heterodimensional cycles with inclination flip in R4, Discrete and Continuous Dynamical SystemsS, 2011, 4(6), 1511-1532.

    Google Scholar

    [18] X. Liu, Z. Wang and D. Zhu, Bifurcation of rough heteroclinic loop with orbit flips, Int. J. Bifur. Chaos., 2012, 22(11), 1250278-1.

    Google Scholar

    [19] X. Liu, Y. Xu and S. Wang, Heterodimensional cycle bifurcation with two orbit flips, Nonlinear Dyn., 2015, 79(4), 2787-2804.

    Google Scholar

    [20] Q. Lu, Z. Qiao, T. Zhang and D. Zhu, Heterodimensional cycle bifurcation with orbit-flip, Int. J. Bifur. Chaos, 2010, 20(2), 491-508.

    Google Scholar

    [21] S. Newhouse and J. Palis,Bifurcations of Morse-Smale dynamical systems in Dynamical Systems, Academic Press, 1973.

    Google Scholar

    [22] J. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff.Eqs., 2005, 218(2), 390-443.

    Google Scholar

    [23] L. Shilnikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR., 1965, 160, 558-561.

    Google Scholar

    [24] L. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, Methods of qualitative theory in nonlinear dynamics, Part I, World Scientific, 2001.

    Google Scholar

    [25] S. Stephen and C. Sourdis, Heteroclinic orbits in slow-fast Hamiltonian systems with slow manifold bifurcations, J. Dyna. Diff Eq., 2010, 22(4), 629-655.

    Google Scholar

    [26] T. Wagenknecht and A. Champneys, When gap solitons become embedded solitons:a generic unfolding, Phys. D., 2003, 177(1-4), 50-70.

    Google Scholar

    [27] L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc., 2004, 35(3), 419-452.

    Google Scholar

    [28] Y. Xu and D. Zhu, Bifurcations of heterodimensional cycles with one orbit flip and one inclination flip, Nonlinear Dynam, 2010, 60(1), 1-13.

    Google Scholar

    [29] P. Yu and M. Han, Four limit cycles in quadratic near-integrable system, Journal of Appl. Anal. and Comput., 2011, 1(2), 291-298.

    Google Scholar

    [30] D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Sci. China Ser A., 1998, 41(8), 837-848.

    Google Scholar

Article Metrics

Article views(2153) PDF downloads(975) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint