[1]
|
A. Algaba, E. Freire, E. Gamero and A. J. Rodrguez-Luis, A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dynam, 2000, 22(3), 249-269.
Google Scholar
|
[2]
|
F. Battelli and K. Palmer, A remark about Sil'nikov saddle-focus homoclinic orbits, Commun on pure and appl. anal., 2012, 10(3), 817-830.
Google Scholar
|
[3]
|
C. Bonatti, L. Diaz, E. Pujals, and J. Rocha, Robust transitivity and heterodimensional cycles, Asterisqu, 2003, 286, 187-222.
Google Scholar
|
[4]
|
V. Bykov, The bifurcations of separatrix contours and chaos, Phys. D, 1993, 62(1), 290-299.
Google Scholar
|
[5]
|
V. Bykov, Orbits structure in a neighborhoood of a separatrix cycle containing two saddlefoci, Amer. Math. Soc. Trans., 2000, 200, 87-97.
Google Scholar
|
[6]
|
A. Champneys, J. Härterich and B. Sandstede, A non-transverse homoclinic orbit to a saddle-node equilibrium, Ergod. Theor. Dyn. Syst., 1996, 16(3), 431-450.
Google Scholar
|
[7]
|
S. Chow, B. Deng and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dyn. Syst. Diff. Eq., 1990, 2(2), 177-244.
Google Scholar
|
[8]
|
L. Diaz and J. Rocha, Heterodimensional cycles, partial hyperbolity and limit dynamics, Fund. Math., 2002, 174(2), 127-186.
Google Scholar
|
[9]
|
M. F ečkan and J. Gruendler, Homoclinic-Hopf interaction:an autoparametric bifurcation, Proc. Roy. Soc. Edinburgh, 2000, 130(5), 999-1015.
Google Scholar
|
[10]
|
F. Fernández-Sánchez, E. Freire and A. Rodríguez-Luis, Bi-spiraling homoclinic curves around a T-point in Chuas circuit, Int. J. Bifur. Chaos, 2004, 14(5), 1789-1793.
Google Scholar
|
[11]
|
F. Fernández-Sánchez, E. Freire and A. Rodríguez-Luis, Analysis of the Tpoint-Hopf bifurcation, Physica D, 2008, 237(3), 292-305.
Google Scholar
|
[12]
|
F. Geng, D. Zhu and Y. Xu, Bifurcations of heterodimensional cyces with two saddle points, Chaos, Solitons & Fractals, 2009, 39(5), 2063-2075.
Google Scholar
|
[13]
|
M. Han, J. Yang, D. Xiao, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle, International J. Bifur. Chaos, 2012, 22(8), 1250189.
Google Scholar
|
[14]
|
J. Lamb, M. Teixeira and N. Kevin, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3, J. Diff. Eqs., 2005, 219(1), 78-115.
Google Scholar
|
[15]
|
X. Lin, Using Melnikov's methods to solve Shil'nikov's problems, Proc. Royal Soc. Edinburgh, 1990, 116(A), 295-325.
Google Scholar
|
[16]
|
X. Lin and C. Zhu, Codiagonalization of matrices and existence of multiple homoclinic solutions, J. Appl. Anal. Comput., 2017, 7(1), 172-188.
Google Scholar
|
[17]
|
D. Liu, S. Ruan, and D. Zhu, Nongeneric bifurcations near Heterodimensional cycles with inclination flip in R4, Discrete and Continuous Dynamical SystemsS, 2011, 4(6), 1511-1532.
Google Scholar
|
[18]
|
X. Liu, Z. Wang and D. Zhu, Bifurcation of rough heteroclinic loop with orbit flips, Int. J. Bifur. Chaos., 2012, 22(11), 1250278-1.
Google Scholar
|
[19]
|
X. Liu, Y. Xu and S. Wang, Heterodimensional cycle bifurcation with two orbit flips, Nonlinear Dyn., 2015, 79(4), 2787-2804.
Google Scholar
|
[20]
|
Q. Lu, Z. Qiao, T. Zhang and D. Zhu, Heterodimensional cycle bifurcation with orbit-flip, Int. J. Bifur. Chaos, 2010, 20(2), 491-508.
Google Scholar
|
[21]
|
S. Newhouse and J. Palis,Bifurcations of Morse-Smale dynamical systems in Dynamical Systems, Academic Press, 1973.
Google Scholar
|
[22]
|
J. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff.Eqs., 2005, 218(2), 390-443.
Google Scholar
|
[23]
|
L. Shilnikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR., 1965, 160, 558-561.
Google Scholar
|
[24]
|
L. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, Methods of qualitative theory in nonlinear dynamics, Part I, World Scientific, 2001.
Google Scholar
|
[25]
|
S. Stephen and C. Sourdis, Heteroclinic orbits in slow-fast Hamiltonian systems with slow manifold bifurcations, J. Dyna. Diff Eq., 2010, 22(4), 629-655.
Google Scholar
|
[26]
|
T. Wagenknecht and A. Champneys, When gap solitons become embedded solitons:a generic unfolding, Phys. D., 2003, 177(1-4), 50-70.
Google Scholar
|
[27]
|
L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc., 2004, 35(3), 419-452.
Google Scholar
|
[28]
|
Y. Xu and D. Zhu, Bifurcations of heterodimensional cycles with one orbit flip and one inclination flip, Nonlinear Dynam, 2010, 60(1), 1-13.
Google Scholar
|
[29]
|
P. Yu and M. Han, Four limit cycles in quadratic near-integrable system, Journal of Appl. Anal. and Comput., 2011, 1(2), 291-298.
Google Scholar
|
[30]
|
D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Sci. China Ser A., 1998, 41(8), 837-848.
Google Scholar
|