[1]
|
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary cinditions, I, Comm. Pure Appl. Math., 1959, 12(4), 623-727.
Google Scholar
|
[2]
|
H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 1971, 21(2), 125-146.
Google Scholar
|
[3]
|
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space, SIAM Review, 1976, 18(4), 620-709.
Google Scholar
|
[4]
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons Ltd., Chichester, UK, 2003.
Google Scholar
|
[5]
|
S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reactiondiffusion population model, J. Differential Equations, 2016, 260(1), 218-240.
Google Scholar
|
[6]
|
S. Chen and J. Yu, Stability analysis of a reaction-diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dyn. Diff. Equat., 2016, 28(3-4), 857-866.
Google Scholar
|
[7]
|
L. Collatz, Funktionalanalysis und Numerische Mathematik, Springer, Berlin, 1964.
Google Scholar
|
[8]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998, 19.
Google Scholar
|
[9]
|
W. Feng and X. Lu, Harmless delays for permanence in a class of population models with diffusion effects, J. Math. Anal. Appl., 1997, 206(2), 547-566.
Google Scholar
|
[10]
|
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, NJ, 1964.
Google Scholar
|
[11]
|
S. A. Gourley and Y. Kuang, wavefronts and global stability in a time-delayed population model with stage structure, R. Soc. Land. Proc., Ser. A:Math. Phys. Eng. Sci., 2003, 459(2034), 1563-1579. DOI:10.1098/rspa.2002.1094.
Google Scholar
|
[12]
|
S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in:Nonlinear Dynamics and Evolution Equations (H. Brunner, X.-Q. Zhao and X. Zou, eds.), Fields Inst. Commun., 2006, 48, 137-200.
Google Scholar
|
[13]
|
S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 2015, 259(4), 1409-1448.
Google Scholar
|
[14]
|
S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 2016, 260(1), 781-817.
Google Scholar
|
[15]
|
Z. Guo, Z. Yang and X. Zou, Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition:a non-monotone case, Commun. Pure Appl. Anal., 2012, 11(5), 1825-1838.
Google Scholar
|
[16]
|
W. Huang and Y. Wu, A note on monotone iteration method for traveling waves of reaction-diffusion systems with time delay, J. Appl. Anal. Comput., 2014, 4(3), 283-294.
Google Scholar
|
[17]
|
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
Google Scholar
|
[18]
|
H. B. Keller, Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Rat. Mech. Anal., 1969, 35(5), 363-381.
Google Scholar
|
[19]
|
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and quasilinear equations of parabolic type, AMS Translations of Mathematical Monographs, 1968, 23.
Google Scholar
|
[20]
|
O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Euasilinear Elliptic Equations, Academic Press, New York, 1968.
Google Scholar
|
[21]
|
D. Liang, J. W. H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numerical computations, Diff. Eqns. Dynam. Syst., 2003, 11, 117-139.
Google Scholar
|
[22]
|
X. Lu, Persistence and extinction in a competition-diffusion system with time delays, Canad. Appl. Math. Quart., 1994, 2(2), 231-246.
Google Scholar
|
[23]
|
X. Lu and W. Feng, Dynamics and numerical simulations of food-chain populations, Appl. Math. Comput., 1994, 65(1-3), 335-344.
Google Scholar
|
[24]
|
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 1977, 197(4300), 287-289. DOI:10.1126/science.267326.
Google Scholar
|
[25]
|
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 1990, 321(1), 1-44.
Google Scholar
|
[26]
|
C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.
Google Scholar
|
[27]
|
C. V. Pao, On a coupled reaction-diffusion system with time delays, SIAM J. Math. Anal., 1987, 18(4), 1026-1039.
Google Scholar
|
[28]
|
C. V. Pao, Numerical methods for coupled systems of nonlinear parabolic boundary value problems, J. Math. Anal. Appl., 1990, 151(2), 581-608.
Google Scholar
|
[29]
|
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
Google Scholar
|
[30]
|
C. V. Pao, Coupled nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 1995, 196(1), 237-265.
Google Scholar
|
[31]
|
C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 1996, 198(3), 751-779.
Google Scholar
|
[32]
|
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967.
Google Scholar
|
[33]
|
R. Redlinger, Existence theorems for semilinear parabolic systems with functionals, Nonlinear Anal., 1984, 8(6), 667-682.
Google Scholar
|
[34]
|
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 1972, 21(11), 979-1000.
Google Scholar
|
[35]
|
A. Schiaffino and A. Tesei, Monotone methods and attractivity results for Volterra integro-partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 1981, 89(1-2), 135-142.
Google Scholar
|
[36]
|
L. Shu, P. Weng and Y. Tian, Traveling wavefronts of a delayed lattice reactiondiffusion model, J. Appl. Anal. Comput., 2015, 5(1), 64-76.
Google Scholar
|
[37]
|
J. W. H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains, Proc. Royal Soc. London. A, 2001, 457, 1841-1853. DOI:10.1098/rspa.2001.0789.
Google Scholar
|
[38]
|
H. R. Thieme and X. Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. RWA., 2001, 2(2), 145-160.
Google Scholar
|
[39]
|
H. R. Thieme and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Diff. Eqns., 2003, 195(2), 430-470.
Google Scholar
|
[40]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
Google Scholar
|
[41]
|
S. L. Wu, C. H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 2015, 258(4), 1058-1105.
Google Scholar
|
[42]
|
D. Xu and X. Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Canad. Appl. Math. Quart., 2003, 11(3), 303-319.
Google Scholar
|
[43]
|
T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition:a non-monotone case, J. Differential Equations, 2008, 245(11), 3376-3388.
Google Scholar
|
[44]
|
T. Yi and X. Zou, On Dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality, J. Dyn. Diff. Equat., 2013, 25(4), 959-979.
Google Scholar
|
[45]
|
T. Yi and X. Zou, Dirichlet problem of a delayed reaction-diffusion equation on a semi-infinite interval, J. Dyn. Diff. Equat., 2016, 28(3-4), 1007-1030.
Google Scholar
|
[46]
|
Y. Yuan, Z. Guo and M. Tang, A nonlocal diffusion population model with age structure and Dirichlet boundary condition, Commun. Pure Appl. Anal., 2015, 14(5), 2095-2115.
Google Scholar
|
[47]
|
Y. Yuan and Z. Guo, Global dynamics of a nonlocal population model with age structure in a bounded domain:A non-monotone case, Sci. China Math., 2015, 58(10), 2145-2166.
Google Scholar
|
[48]
|
L. Zhang, Z.-C. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differential Equations, 2015, 258(9), 3011-3036.
Google Scholar
|
[49]
|
X. Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with time delay, Canad. Appl. Math. Quart., 2009, 17(1), 271-281.
Google Scholar
|