[1]
|
A. Atabaigi, N. Nyamoradi and H. R. Z. Zangeneh, The number of limit cycles of a quintic polynomial system, Comput. Math. Appl., 2009, 57, 677-684.
Google Scholar
|
[2]
|
A. Buiča and J. Llibre, Limit cycles of a perturbed cubic polynomial differential center, Chaos Solitons Fractals, 2007, 32, 1059-1069.
Google Scholar
|
[3]
|
T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers and separatrix cycles of analytic systems, SIAM Rev., 1994, 36, 341-376.
Google Scholar
|
[4]
|
G. Chang and M. Han, Bifurcation of limit cycles by perturbing a periodic annulus with multiple critical points, Int. J. Bifurcation and Chaos, 2013, 23, 1350143(14 pages).
Google Scholar
|
[5]
|
S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994.
Google Scholar
|
[6]
|
B. Coll, A. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls Syst. Ser. A Math. Anal., 2005, 12, 275-287.
Google Scholar
|
[7]
|
B. Coll, J. Llibre and R. Prohens, Limit cycles bifurcating from a perturbed quartic center, Chaos Solitons Fractals, 2011, 44, 317-334.
Google Scholar
|
[8]
|
A. Gasull, J. T. Lázaro and J. Torregrosa, Upper bounds for the number of zeroes for some Abelian integrals, Nonlinear Anal., 2012, 75, 5169-5179.
Google Scholar
|
[9]
|
A. Gasull, C. Li and J. Torregrosa, Limit cycles appearing from the perturbation of a system with a multiple line of critical points, Nonlinear Anal., 2012, 75, 278-285.
Google Scholar
|
[10]
|
J. Giné,and J. Llibre, Limit cycles of cubic polynomial vector feilds via the averaging theory, Nonlinear Anal., 2007, 66, 1707-1721.
Google Scholar
|
[11]
|
M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7(2), 788-794.
Google Scholar
|
[12]
|
S. Li, Y. Zhao and J. Li, On the number of limit cycles of a perurbed cubic polynomial differential center, J. Math. Anal. Appl., 2013, 404, 212-220.
Google Scholar
|
[13]
|
J. Llibre and J. S. Pérez del Río and J. A. Rodríguez, Averaging analysis of a perturbed quadratic center, Nonlinear Anal., 2001, 46, 45-51.
Google Scholar
|
[14]
|
J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamic System, in:Applied Mathematical Science, Springer-Verlag, New York, 1985.
Google Scholar
|
[15]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, in:Universitext, Springer-Verlag, Berlin, 1996.
Google Scholar
|
[16]
|
G. Xiang and M. Han, Global bifurcation of limit cycles in a family of polynomial, J. Math. Anal. Appl., 2004, 295, 633-644.
Google Scholar
|
[17]
|
Y. Xiong, The number of limit cycles in perturbations of polynomial systems with multiple circles of critical points, J. Math. Anal. Appl., 2016, 440, 220-239.
Google Scholar
|