[1]
|
B. Ahmad and J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl, 2009, 58, 1838-1843.
Google Scholar
|
[2]
|
M. Belmekki, J. Nieto and R. Rodrguez-Lpez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009, 2009, 18 pages.
Google Scholar
|
[3]
|
M. Benchohra, A. Cabada and D. Seba, An existence result for nonlinear fractional differential equations on Banach spaces, Bound. Value Probl., 2009, 2009, 1-11.
Google Scholar
|
[4]
|
G. Bonanno and G. Molica, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, 2009, 1-20.
Google Scholar
|
[5]
|
T. Chen and W. Liu, Solvability of fractional boundary value problem with p-Laplacian via critical point theory, Bound. Value. Probl., 2016, 2016, 1-12.
Google Scholar
|
[6]
|
G. Chai and J. Chen, Existence of solutions for impulsive fractional boundary value problems via variational method, Bound. Value. Probl., 2017, 2017.
Google Scholar
|
[7]
|
L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Pr., 1991, 5, 81-88.
Google Scholar
|
[8]
|
W. Glockle and T. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J., 1995, 68, 46-53.
Google Scholar
|
[9]
|
J. Graef, L. Kong, Q. Kong and M. Wang, Fractional boundary value problems with integral boundary conditions, Bound. Value Probl., 2013, 92, 2008-2020.
Google Scholar
|
[10]
|
S. Heidarkhani, Y. Zhou, G. Caristi, G. A. Afrouzi and S. Moradi, Existence results for fractional differential systems through a local minimization principle, Comput. Math. Appl., 2016. DOI:10.1016/j.camwa.2016.04.012.
Google Scholar
|
[11]
|
S. Heidarkhani, Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynam. Sys. Appl., 2014, 23, 317-332.
Google Scholar
|
[12]
|
M. Jia and X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 2014, 232, 313-323.
Google Scholar
|
[13]
|
F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos., 2012, 22, 1250086(17 pages).
Google Scholar
|
[14]
|
A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., 2006, 204, 2453-2461.
Google Scholar
|
[15]
|
D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41, 3197-3212.
Google Scholar
|
[16]
|
E. Lieb and M. Loss, Analysis, American Mathematical Society, USA, 2001.
Google Scholar
|
[17]
|
K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
Google Scholar
|
[18]
|
K. Oldham and J. Spanier, The fractional calculus, Academic Press. New York, 1974.
Google Scholar
|
[19]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[20]
|
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Am. Math. Soc., 1986, 65.
Google Scholar
|
[21]
|
S. Samko, A. Kilbas and O. Marichev, Fractional Integral and Derivatives:Theory and Applications, Gordon and Breach Science Publishers, Longhorne, PA, 1993.
Google Scholar
|
[22]
|
J. Simon, Régularité,de la solution d'un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse, 1981, 3, 247-274.
Google Scholar
|
[23]
|
C. Torres, Existence of solution for a class of fractional Hamiltonian systems, Electron. J. Differ. Eq., 2012, 2013, 1-12.
Google Scholar
|
[24]
|
Y. Zhao, H. Chen and B. Qin, Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., 2015, 257, 417-427.
Google Scholar
|