[1]
|
S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 1994, 2, 101-111.
Google Scholar
|
[2]
|
K. A. Brakke, The motion of a surface by its mean curvature, in "Math. Notes," Princeton Univ. Press, Princeton, NJ, 1978.
Google Scholar
|
[3]
|
P. Concus and R. Finn, On capillary free surface in a gravitational field, Acta Math., 1974, 132, 207-223.
Google Scholar
|
[4]
|
K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z., 1982, 180, 179-192.
Google Scholar
|
[5]
|
C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differ. Equat., 1980, 36, 139-172.
Google Scholar
|
[6]
|
C. Gerhardt, Global regularity of the solutions to the capillary problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1976, 4(3), 151-176.
Google Scholar
|
[7]
|
D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
Google Scholar
|
[8]
|
B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, In Elliptic and Parabolic methods in Geometry, A K Peters, Wellesley(MA), 1996, 47-56.
Google Scholar
|
[9]
|
B. Guan, Gradient estimates for solutions of nonparametric curvature evolution with prescribed contact angle condition, in Monge-Ampere Equation:Applications to Geometry and Optimization, Contemporary Mathematics, 1999, 226, 105-112.
Google Scholar
|
[10]
|
G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 1984, 20, 237-266.
Google Scholar
|
[11]
|
G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 1986, 84, 463-480.
Google Scholar
|
[12]
|
G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equat., 1989, 77, 369-378.
Google Scholar
|
[13]
|
H. Ishii, Introduction to Viscosity Solutions and the Large Time Behavior of Solutions:approximations, numerical analysis and applications, Lecture Notes in Math., 2074, 2013, 111-249.
Google Scholar
|
[14]
|
N. J. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, Proc. Sympos. Pure Math., 1986, 45, Part 2:81-89.
Google Scholar
|
[15]
|
N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Commu. Part. Differ. Equat., 1988, 13(1), 1-32.
Google Scholar
|
[16]
|
O. A. Ladyzhenskaya and N. Ural'tseva, Local estimates for gradients of nonuniformly elliptic and parabolic equations, Comm.Pure Appl. Math., 1970, 23, 677-703.
Google Scholar
|
[17]
|
G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commu. Part. Differ. Equat., 1988, 13, 33-59.
Google Scholar
|
[18]
|
G. Lieberman, Oblique boundary value problems for elliptic equations, World Scientific Publishing, 2013.
Google Scholar
|
[19]
|
G. Lieberman, The first initial boundary value problem for quasilinear second order parabolic equations, Ann. Sci. Norm. Sup. Pisa Ser. IV, 1986, 8, 347-387.
Google Scholar
|
[20]
|
A. Lichnewski and R. Temam, Surfaces minimales d'èvolutron:Le concept de pseudosolution, C.R. Acad. Sci. Paris, 1977, 284, 853-856.
Google Scholar
|
[21]
|
P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 1985, 52, 793-820.
Google Scholar
|
[22]
|
X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Adv.Math., 2016, 290, 1010-1039.
Google Scholar
|
[23]
|
X. N. Ma, P. H. Wang and W. Wei, Mean Curvature Equation and Mean Curvature Flow with Non-zero Neumann Boundary Conditions on Strictly Convex domain, Journal of Functional Analysis, 2018, 274, 252-277.
Google Scholar
|
[24]
|
L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 1976, 61, 19-34.
Google Scholar
|
[25]
|
J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 1975, 28, 189-200.
Google Scholar
|
[26]
|
W. Sheng, N. Trudinger and X. J. Wang, Prescribed Weingarten Curvature Equations., Recent Development in Geometry and Analysis, ALM 2012, 23, 359-386.
Google Scholar
|
[27]
|
O.C. Schnürer and R. S. Hartmut, Translating solutions for gauss curvature flows with Neumann boundary conditions, Pacific Journal of Mathematics, 2004, 213(1), 89-109.
Google Scholar
|
[28]
|
P. H. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific Journal of Mathematics, 2014, 267(2), 489-509.
Google Scholar
|
[29]
|
P. H. Wang, X. Liu and Z. H. Liu, The convexity of the level sets of maximal strictly space-like hypersurfaces defined on 2-dimensional space forms, Nonlinear Analysis, 2018, 174, 79-103.
Google Scholar
|
[30]
|
P. H. Wang, H. M. Qiu and Z. H. Liu, Some geometrical properties of minimal graph on space forms with nonpositive curvature, Houston J. Math., 2018, 44(2), 545-570.
Google Scholar
|
[31]
|
P. H. Wang and X. J. Wang,The geometric properties of harmonic functions on 2-dimensional Riemannian manifolds, Nonlinear Analysis, 2014, 103, 2-8.
Google Scholar
|
[32]
|
P. H. Wang and L. L. Zhao,Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Analysis, 2016, 130, 1-17.
Google Scholar
|
[33]
|
P. H. Wang and D. K. Zhang, Convexity of level sets of minimal graph on space form with nonnegative curvature with nonnegative curvature, J. Differ. Equat., 2017, 262, 5534-5564.
Google Scholar
|
[34]
|
P. H. Wang and J. Zhuang, Convexity of level lines of maximal spacelike hypersurfaces in Minkowski space, Iseral J. Math., TBD 2018, 1-24. DOI:10.1007/s11856-018-1695-z.
Google Scholar
|
[35]
|
X. J. Wang, Interior gradient estimates for mean curvature equations, Math.Z., 1998, 228, 73-81.
Google Scholar
|
[36]
|
J. J. Xu, Mean curvature flows of graphs with Neumann boundary condition, https://arxiv.org/abs/1606.06392.
Google Scholar
|