2018 Volume 8 Issue 1
Article Contents

Mohamed Abdalla Darwish, John R. Graef, Kishin Sadarangani. ON URYSOHN-VOLTERRA FRACTIONAL QUADRATIC INTEGRAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 331-343. doi: 10.11948/2018.331
Citation: Mohamed Abdalla Darwish, John R. Graef, Kishin Sadarangani. ON URYSOHN-VOLTERRA FRACTIONAL QUADRATIC INTEGRAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 331-343. doi: 10.11948/2018.331

ON URYSOHN-VOLTERRA FRACTIONAL QUADRATIC INTEGRAL EQUATIONS

  • Fund Project:
  • In this paper the authors study a fractional quadratic integral equation of Urysohn-Volterra type. They show that the integral equation has at least one monotonic solution in the Banach space of all real functions defined and continuous on the interval[0,1]. The main tools in the proof are a fixed point theorem due to Darbo and a monotonicity measure of noncompactness.
    MSC: 45G10;45M99;47H09
  • 加载中
  • [1] J. Banás and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.

    Google Scholar

    [2] J. Banás and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 2004, 47, 271-279.

    Google Scholar

    [3] J. Banás and D. O'Regan, On existence and local attractivity of solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 2008, 345, 573-582.

    Google Scholar

    [4] J. Banás and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 2007, 332, 1370-1378.

    Google Scholar

    [5] J. Banás and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Model., 2009, 49(3-4), 488-496.

    Google Scholar

    [6] T. A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.

    Google Scholar

    [7] J. Caballero, B. López and K. Sadarangani, On monotonic solutions of an integral equation of Volterra type with supremum, J. Math. Anal. Appl., 2005, 305(1), 304-315.

    Google Scholar

    [8] K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA 1967.

    Google Scholar

    [9] S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.

    Google Scholar

    [10] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar

    [11] M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 2005, 311, 112-119.

    Google Scholar

    [12] M. A. Darwish, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl., 2008, 17, 539-550.

    Google Scholar

    [13] M. A. Darwish, Existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal., 2009, 88(2), 169-181.

    Google Scholar

    [14] M. A. Darwish, On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Appl., 2011, 61, 182-190.

    Google Scholar

    [15] M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument, Bull. Korean Math. Soc., 2011, 48(3), 539-553.

    Google Scholar

    [16] M. A. Darwish and S. K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlinear Anal., 2009, 71, 5513-5521.

    Google Scholar

    [17] M. A. Darwish and S. K. Ntouyas, On a quadratic fractional HammersteinVolterra integral equation with linear modification of the argument, Nonlinear Anal., 2011, 74, 3510-3517.

    Google Scholar

    [18] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.

    Google Scholar

    [19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [20] C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq., 1982, 4, 221-237.

    Google Scholar

    [21] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [22] R. W. Leggett, A new approach to the H-equation of Chandrasekher, SIAM J. Math., 1976, 7, 542-550.

    Google Scholar

    [23] R. K. Miller, Nonlinear Volterra Integral Equations, Mathematics Lecture Note Series. Menlo Park, California, 1971.

    Google Scholar

    [24] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

    Google Scholar

    [25] D. O'Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar

    [26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [27] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives:Theory and Applications, Gordon and Breach Science Publs., Amsterdam, 1993. (Russian Edition 1987)

    Google Scholar

    [28] G. Spiga, R. L. Bowden, and V. C. Boffi, On the solutions of a class of nonlinear integral equations arising in transport theory, J. Math. Phys., 1984, 25(12), 3444-3450.

    Google Scholar

    [29] M. Väth, Volterra and Integral Equations of Vector Functions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 224, Marcel Dekker, Inc., New York, 2000.

    Google Scholar

    [30] P. P. Zabrejko et al., Integral Equations-A Reference Text, Noordhoff International Publishing, The Netherlands, 1975(Russain edition:Nauka, Moscow 1968).

    Google Scholar

Article Metrics

Article views(2143) PDF downloads(759) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint