[1]
|
J. Banás and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.
Google Scholar
|
[2]
|
J. Banás and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 2004, 47, 271-279.
Google Scholar
|
[3]
|
J. Banás and D. O'Regan, On existence and local attractivity of solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 2008, 345, 573-582.
Google Scholar
|
[4]
|
J. Banás and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 2007, 332, 1370-1378.
Google Scholar
|
[5]
|
J. Banás and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Model., 2009, 49(3-4), 488-496.
Google Scholar
|
[6]
|
T. A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
Google Scholar
|
[7]
|
J. Caballero, B. López and K. Sadarangani, On monotonic solutions of an integral equation of Volterra type with supremum, J. Math. Anal. Appl., 2005, 305(1), 304-315.
Google Scholar
|
[8]
|
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA 1967.
Google Scholar
|
[9]
|
S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.
Google Scholar
|
[10]
|
C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, Cambridge, 1991.
Google Scholar
|
[11]
|
M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 2005, 311, 112-119.
Google Scholar
|
[12]
|
M. A. Darwish, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl., 2008, 17, 539-550.
Google Scholar
|
[13]
|
M. A. Darwish, Existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal., 2009, 88(2), 169-181.
Google Scholar
|
[14]
|
M. A. Darwish, On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Appl., 2011, 61, 182-190.
Google Scholar
|
[15]
|
M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument, Bull. Korean Math. Soc., 2011, 48(3), 539-553.
Google Scholar
|
[16]
|
M. A. Darwish and S. K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlinear Anal., 2009, 71, 5513-5521.
Google Scholar
|
[17]
|
M. A. Darwish and S. K. Ntouyas, On a quadratic fractional HammersteinVolterra integral equation with linear modification of the argument, Nonlinear Anal., 2011, 74, 3510-3517.
Google Scholar
|
[18]
|
J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.
Google Scholar
|
[19]
|
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
Google Scholar
|
[20]
|
C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq., 1982, 4, 221-237.
Google Scholar
|
[21]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
Google Scholar
|
[22]
|
R. W. Leggett, A new approach to the H-equation of Chandrasekher, SIAM J. Math., 1976, 7, 542-550.
Google Scholar
|
[23]
|
R. K. Miller, Nonlinear Volterra Integral Equations, Mathematics Lecture Note Series. Menlo Park, California, 1971.
Google Scholar
|
[24]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
Google Scholar
|
[25]
|
D. O'Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, Kluwer Academic Publishers, Dordrecht, 1998.
Google Scholar
|
[26]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[27]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives:Theory and Applications, Gordon and Breach Science Publs., Amsterdam, 1993. (Russian Edition 1987)
Google Scholar
|
[28]
|
G. Spiga, R. L. Bowden, and V. C. Boffi, On the solutions of a class of nonlinear integral equations arising in transport theory, J. Math. Phys., 1984, 25(12), 3444-3450.
Google Scholar
|
[29]
|
M. Väth, Volterra and Integral Equations of Vector Functions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 224, Marcel Dekker, Inc., New York, 2000.
Google Scholar
|
[30]
|
P. P. Zabrejko et al., Integral Equations-A Reference Text, Noordhoff International Publishing, The Netherlands, 1975(Russain edition:Nauka, Moscow 1968).
Google Scholar
|