[1]
|
L. C. Evans, Partial Differential Equations, in:Grad. Stud. Math., vol.19, Amer. Math. Soc., Providence, RI, 1998.
Google Scholar
|
[2]
|
Q. Gao, F. Li and Y. Wang, Blow-up of the solution for higher-order Kirchhofftype equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9(3), 686-698.
Google Scholar
|
[3]
|
M. A. Horn and I. Lasiecka, Uniform decay weak solutions to a von Kármán plate with nonlinear boundary dissipation, Differential and Integral Equations, 1994, 7, 885-908.
Google Scholar
|
[4]
|
M. A. Horn and I. Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback, Appl. Math. Optim., 1995, 31, 57-84.
Google Scholar
|
[5]
|
J. R. Kang, Energy decay rates for von Kármán system with memory and boundary feedback, Appl. Math. Comput., 2012, 218, 9085-9094.
Google Scholar
|
[6]
|
J. Lagnese, Boundary stabilization of thin plates, SIAM Studies in Applied Mathematics, 10. SIAM, Philadelphia, PA, 1989.
Google Scholar
|
[7]
|
F. Li and Q. Gao,Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comput., 2016, 274, 383-392.
Google Scholar
|
[8]
|
X. Lin and F. Li, Asymptotic energy estimates for nonlinear Petrovsky plate model subject to viscoelastic damping, Abstr. Appl. Anal., Volume 2012, Article ID 419717, 25 pages.
Google Scholar
|
[9]
|
F. Li, Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations, Acta. Math. Sini., 2009, 25, 2133-2156.
Google Scholar
|
[10]
|
F. Li and Y. Bai, Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations, J. Math. Anal. Appl., 2009, 351, 522-535.
Google Scholar
|
[11]
|
F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system, J. Diff. Equa., 2010, 249, 1241-1257.
Google Scholar
|
[12]
|
F. Li, Z. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal.:Real World Applications, 2011, 12, 1770-1784.
Google Scholar
|
[13]
|
F. Li and C. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Anal., 2011, 74, 3468-3477.
Google Scholar
|
[14]
|
F. Li and Y. Bao, Uniform Stability of the Solution for a Memory-Type Elasticity System with Nonhomogeneous Boundary Control Condition, J. Dyn. Control. Syst., 2017, 23, 301-315.
Google Scholar
|
[15]
|
F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385, 1005-1014.
Google Scholar
|
[16]
|
F. Li and J Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Boundary Value Problems 2014, 2014:219.
Google Scholar
|
[17]
|
C. A. Raposo and M. L. Santos,General decay to a von Kármán system with memory, Nonlinear Anal., 2011, 74, 937-945.
Google Scholar
|
[18]
|
M. L. Santos and F. Junior, A boundary condition with memory for Kirchhoff plates equations, Appl. Math. Comput., 2004, 148, 475-496.
Google Scholar
|
[19]
|
S. Y. Shin and J. R. Kang, General decay for the degenerate equation with a memory condition at the boundary, Abstr. Appl. Anal., Volume 2013, Article ID 682061, 8 pages.
Google Scholar
|
[20]
|
Y. You, Energy decay and exact controllability for the Petrovsky equation in a bounded domain, Adv. Appl. Math., 1990, 11, 372-388.
Google Scholar
|