2018 Volume 8 Issue 1
Article Contents

Fushan Li, Guangwei Du. GENERAL ENERGY DECAY FOR A DEGENERATE VISCOELASTIC PETROVSKY-TYPE PLATE EQUATION WITH BOUNDARY FEEDBACK[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 390-401. doi: 10.11948/2018.390
Citation: Fushan Li, Guangwei Du. GENERAL ENERGY DECAY FOR A DEGENERATE VISCOELASTIC PETROVSKY-TYPE PLATE EQUATION WITH BOUNDARY FEEDBACK[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 390-401. doi: 10.11948/2018.390

GENERAL ENERGY DECAY FOR A DEGENERATE VISCOELASTIC PETROVSKY-TYPE PLATE EQUATION WITH BOUNDARY FEEDBACK

  • Fund Project:
  • In this paper, we consider a degenerate viscoelastic Petrovsky-type plate equation K(x)utt + ∆2u -∫0t g(t -s)∆2u(s)ds + f(u)=0 with boundary feedback. Under the weaker assumption on the relaxation function, the general energy decay is proved by priori estimates and analysis of Lyapunov-like functional. The exponential decay result and polynomial decay result in some literature are special cases of this paper.
    MSC: 35L05;35L15;35L70
  • 加载中
  • [1] L. C. Evans, Partial Differential Equations, in:Grad. Stud. Math., vol.19, Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar

    [2] Q. Gao, F. Li and Y. Wang, Blow-up of the solution for higher-order Kirchhofftype equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9(3), 686-698.

    Google Scholar

    [3] M. A. Horn and I. Lasiecka, Uniform decay weak solutions to a von Kármán plate with nonlinear boundary dissipation, Differential and Integral Equations, 1994, 7, 885-908.

    Google Scholar

    [4] M. A. Horn and I. Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback, Appl. Math. Optim., 1995, 31, 57-84.

    Google Scholar

    [5] J. R. Kang, Energy decay rates for von Kármán system with memory and boundary feedback, Appl. Math. Comput., 2012, 218, 9085-9094.

    Google Scholar

    [6] J. Lagnese, Boundary stabilization of thin plates, SIAM Studies in Applied Mathematics, 10. SIAM, Philadelphia, PA, 1989.

    Google Scholar

    [7] F. Li and Q. Gao,Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comput., 2016, 274, 383-392.

    Google Scholar

    [8] X. Lin and F. Li, Asymptotic energy estimates for nonlinear Petrovsky plate model subject to viscoelastic damping, Abstr. Appl. Anal., Volume 2012, Article ID 419717, 25 pages.

    Google Scholar

    [9] F. Li, Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations, Acta. Math. Sini., 2009, 25, 2133-2156.

    Google Scholar

    [10] F. Li and Y. Bai, Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations, J. Math. Anal. Appl., 2009, 351, 522-535.

    Google Scholar

    [11] F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system, J. Diff. Equa., 2010, 249, 1241-1257.

    Google Scholar

    [12] F. Li, Z. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal.:Real World Applications, 2011, 12, 1770-1784.

    Google Scholar

    [13] F. Li and C. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Anal., 2011, 74, 3468-3477.

    Google Scholar

    [14] F. Li and Y. Bao, Uniform Stability of the Solution for a Memory-Type Elasticity System with Nonhomogeneous Boundary Control Condition, J. Dyn. Control. Syst., 2017, 23, 301-315.

    Google Scholar

    [15] F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385, 1005-1014.

    Google Scholar

    [16] F. Li and J Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Boundary Value Problems 2014, 2014:219.

    Google Scholar

    [17] C. A. Raposo and M. L. Santos,General decay to a von Kármán system with memory, Nonlinear Anal., 2011, 74, 937-945.

    Google Scholar

    [18] M. L. Santos and F. Junior, A boundary condition with memory for Kirchhoff plates equations, Appl. Math. Comput., 2004, 148, 475-496.

    Google Scholar

    [19] S. Y. Shin and J. R. Kang, General decay for the degenerate equation with a memory condition at the boundary, Abstr. Appl. Anal., Volume 2013, Article ID 682061, 8 pages.

    Google Scholar

    [20] Y. You, Energy decay and exact controllability for the Petrovsky equation in a bounded domain, Adv. Appl. Math., 1990, 11, 372-388.

    Google Scholar

Article Metrics

Article views(1915) PDF downloads(868) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint