[1]
|
B. Abraham-Shrauner and K. S. Govinder, Provenance of type Ⅱ hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys., 2006, 13(4), 612-622.
Google Scholar
|
[2]
|
B. Abraham-Shrauner and K. S. Govinder, Master partial differential equations for a type Ⅱ hidden symmetry, J. Math. Anal. Appl., 2008, 343(1), 525-530.
Google Scholar
|
[3]
|
S. C. Anco, G.W. Bluman, Direct construction method for conservation laws of partial differential equations part Ⅱ:general treatment, Eur. J. Appl. Math., 2002, 13(5), 567-585.
Google Scholar
|
[4]
|
E. Bessel-Hagen, Uber die Erhaltungss ¨ atze der Elektrodynamik ¨, Math. Ann., 1921, 84(3), 258-276.
Google Scholar
|
[5]
|
A. H. Bokhari, A. Y. Al-Dweik, F. D. Zaman, A. H. Kara and F. M. Mahomed, Generalization of the double reduction theory, Nonlinear Anal. Real World Appl., 2010, 11(5), 3763-3769.
Google Scholar
|
[6]
|
P. A. Clarkson, New similarity solutions for the modified Boussinesq equation, J. Phys. A Math. Gen., 1989, 22(13), 2355-2367.
Google Scholar
|
[7]
|
P. A. Clarkson, Dimensional reductions and exact solutions of a generalized nonlinear Schrodinger equation, Nonlinearity 1992, 5(2), 453-472.
Google Scholar
|
[8]
|
J. Douglas, Solutions of the inverse problem of the calculus of variations, J.Amer. Math Soc., 1941, 50(1), 71-128.
Google Scholar
|
[9]
|
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277(4), 212-218.
Google Scholar
|
[10]
|
Z. Fu, S. Liu and S. Liu, New transformations and new approach to find exact solutions to nonlinear equations, Phys. Lett. A, 2002, 299(5), 507-512.
Google Scholar
|
[11]
|
M. Ghil and N. Paldor, A model equation for nonlinear wavelength selection and amplitude evolution of frontal waves, J. Nonlinear Sci., 1994, 4(1), 471-496.
Google Scholar
|
[12]
|
R. K. Gupta and A. Bansal, Painlevé analysis, Lie symmetries and invariant solutions of potential Kadomstev-Petviashvili equation with time dependent coefficients, Appl. Math. Comput., 2013, 219(10), 5290-5302.
Google Scholar
|
[13]
|
J. L. Hu, A new method for finding exact traveling wave solutions to nonlinear partial differential equations, Phys. Lett. A, 2001, 286(2), 175-179.
Google Scholar
|
[14]
|
N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311-328.
Google Scholar
|
[15]
|
A. H. Kara and F. M. Mahomed, Relationship between symmetries and conservation laws, Int. J. Theor. Phys., 2000, 39(1), 23-40.
Google Scholar
|
[16]
|
A. H. Kara and F. M. Mahomed, Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynam., 2006, 45(3), 367-383.
Google Scholar
|
[17]
|
B. Kolev, Poisson brackets in hydrodynamics, Discrete Contin. Dyn. Syst., 2007, 19(3), 555-574.
Google Scholar
|
[18]
|
P. S. Laplace, Celestial Mechanics (English translation), Chelsea, New York, 1966.
Google Scholar
|
[19]
|
B. Li, Y. Chen and H. Q. Zhang, Explicit exact solutions for some nonlinear partial differential equations with nonlinear terms of any order, Czech J. Phys., 2003, 53(4), 283-295.
Google Scholar
|
[20]
|
S. Y. Lou, Nonclassical symmetry reductions for the dispersive wave equations in shallow water, J. Math. Phys., 1992, 33(12), 4300-4305.
Google Scholar
|
[21]
|
D. C. Lu and B. J. Hong, New exact solutions for the (2+1)-dimensional generalized Broer-Kaup system, Appl. Math. Comput., 2008, 199(2), 572-580.
Google Scholar
|
[22]
|
R. Narain and A. H. Kara, On the redefinition of variational and ‘partial’ variational conservation laws in a class of non linear PDEs with mixed derivatives, Math. Comput. Appl., 2010, 15(4), 732-741.
Google Scholar
|
[23]
|
R. Naz, M. D. Khan and I. Naeem, Conservation laws and exact solutions of a class of non linear regularised long wave equations via double reduction theory and Lie symmetries, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18(4), 826-834.
Google Scholar
|
[24]
|
R. Naz, F. Mahomed, T. Hayat, Conservation laws for third-order variant Boussinesq system, Appl. Math. Lett., 2010, 23(8), 883-886.
Google Scholar
|
[25]
|
E. Noether, Invariant variation problems, Transp. Theory. Stat. Phys., 1971, 1(3), 186-207.
Google Scholar
|
[26]
|
P. J. Olver, Application of Lie groups to differential equations, Springer-Verlag, New York, 1993.
Google Scholar
|
[27]
|
R. L. Sachs, On the integrable variant of the Boussinesq system:Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy, Physica D, 1988, 30(1-2), 1-27.
Google Scholar
|
[28]
|
A. Sjöberg, On double reductions from symmetries and conservation laws, Nonlinear Anal. Real World Appl., 2009, 10(6), 3472-3477.
Google Scholar
|
[29]
|
A. Sjöberg and F. Mahomed, The association of non-local symmetries with conservation laws:applications to the heat and Burgers equations, Appl. Math. Comput., 2005, 168(2), 1098-1108.
Google Scholar
|
[30]
|
H. Steudel, Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen, Z. Naturforsch A, 1962, 17(2), 129-132.
Google Scholar
|
[31]
|
M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 1995, 199(3-4), 169-172.
Google Scholar
|
[32]
|
M. Wang, Y. Zhou and Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 1996, 216(1-5), 67-75.
Google Scholar
|
[33]
|
M. Wazwaz, The tanh and sine-cosine method for compact and noncompact solutions of nonlinear Klein-Gordon equation, Appl. Math. Comput., 2005, 167(2), 1179-1195.
Google Scholar
|
[34]
|
Z. Y. Yan, Abundant families of Jacobi elliptic functions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method, Chaos Solitons Fractals, 2003, 18(2), 299-309.
Google Scholar
|
[35]
|
Z. Y. Yan, F. D. Xie and H. Q. Zhang, Symmetry reductions, integrability and solitary wave solutions to high-order modified Boussinesq equations with damping term, Commun. Theor. Phys., 2001, 36(1), 1-6.
Google Scholar
|
[36]
|
E. Yasar and BI.B. Giresunlu, Lie symmetry reductions, exact solutions and conservation laws of the third order variant Boussinesq system, Acta Phys. Pol., 2015, 128(3), 243-255.
Google Scholar
|
[37]
|
J. F. Zhang, Multi-solitary wave solutions for variant Boussinesq equations and Kupershmidt equations, Appl. Math. Mech., 2000, 21(2), 171-175.
Google Scholar
|