[1]
|
P. B. Bailey, L. F. Shampine and P. E. Waltman, Nonlinear Two Point Boundary Value Problems, Academic Press, New York, 1968.
Google Scholar
|
[2]
|
E. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, 1955.
Google Scholar
|
[3]
|
T. M. Dunster, Simplified asymptotic solutions of differential equations having two turning points, with an application to Legendre functions, Stud. Appl. Math., 2011, 127(3), 250-283.
Google Scholar
|
[4]
|
T. M. Dunster, Olver's error bound methods applied to linear ordinary differential equations having a simple turning point, Anal. Appl., 2014, 12(4), 385-402.
Google Scholar
|
[5]
|
C. Ferreira, J. L. López and E. Pérez Sinusía, Convergent and asymptotic expansions of solutions of differential equations with a large parameter:Olver cases Ⅱ and Ⅲ, J. Int. Equ. Appl., 2015, 27(1), 27-45.
Google Scholar
|
[6]
|
C. Ferreira, J. L. López and E. Pérez Sinusía, Convergent and asymptotic expansions of solutions of second order differential equations with a large parameter, Anal. Appl., 2014, 12(5), 523-536.
Google Scholar
|
[7]
|
C. Ferreira, J. L. López and E. Pérez Sinusía, Olver's asymptotic method:a special case, Const. Approx., 2016, 43(2), 273-290.
Google Scholar
|
[8]
|
W. Hachem, A. Hardy and J. Najim, Large complex correlated Wishart matrices:the Pearcey kernel and expansion at the hard edge, Electron. J. Probab., 2016, 21(1), 1-36.
Google Scholar
|
[9]
|
J. L. López, Olver's asymptotic method revisited. Case I, J. Math. Anal. Appl., 2012, 395(2), 578-586.
Google Scholar
|
[10]
|
J. L. López and P. Pagola, Convergent and asymptotic expansions of the Pearcey integral, J. Math. Anal. Appl., 2015, 430(1), 181-192.
Google Scholar
|
[11]
|
K. Ogilvie and A. Olde Daalhuis, Rigorous asymptotics for the Lamé and Mathieu functions and their respective eigenvalues with a large parameter, SIGMA, 2015, 11, paper 095, 31 pp.
Google Scholar
|
[12]
|
F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
Google Scholar
|
[13]
|
R. B. Paris, The asymptotic behaviour of Pearcey's integral for complex variables, Proc. Roy. Soc. London Ser. A., 1991, 432, 391-426.
Google Scholar
|
[14]
|
R. B. Paris and D. Kaminski, Hyperasymptotic evaluation of the Pearcey integral via Hadamard expansions, J. Comput. Appl. Math., 2006, 190, 437-452.
Google Scholar
|
[15]
|
I. Stackgold, Green's functions and Boundary Value Problems, John Wiley & Sons, New York, 1998, Second Edition.
Google Scholar
|
[16]
|
H. Volkmer, The Asymptotic Expansion of Kummer Functions for Large Values of the a-Parameter, and Remarks on a Paper by Olver, SIGMA, 2015, 12, paper 046, 22 pp.
Google Scholar
|