|
[1]
|
D. Applebaum, Lévy processes and stochastic calculus, Cambridge university press, 2009.
Google Scholar
|
|
[2]
|
X. Abdurahman, L. Zhang and Z. Teng, Global dynamics of a discretized heroin epidemic model with time delay, Abstr. Appl. Anal., 2014(2014), Article ID 742385, 10 p.
Google Scholar
|
|
[3]
|
B. Berrhazi, M. El. Fatini, A. Laaribi, R. Pettersson and R. Taki, A stochastic SIRS epidemic model incorporating media coverage and driven by Lévy noise, Chaos, Solitons & Fractals, 2017, 105, 60-68.
Google Scholar
|
|
[4]
|
J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 2012, 391, 363-375.
Google Scholar
|
|
[5]
|
L. Burns, World drug report 2013 united nations office on drugs and crime, Drug Alcohol Rev., 2014, 33, 216-216.
Google Scholar
|
|
[6]
|
T. Britton, Stochastic epidemic models:a survey, Math. Biosci., 2010, 225(1), 24-35.
Google Scholar
|
|
[7]
|
N. Dalal, D. Greenhalgh and X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 2008, 341(2), 1084-1101.
Google Scholar
|
|
[8]
|
B. Fang, X. Li, M. Martcheva and L. Cai, Global stability for a heroin model with two distributed delays, Discrete Cont. Dynamic. Syst. Ser. B, 2014, 19(2), 715-733.
Google Scholar
|
|
[9]
|
B. Fang, X. Li, M. Martcheva and L. Cai, Global stability for a heroin model with age-dependent susceptibility, J. Syst. Sci. Complex., 2015, 28(6), 1243-1257.
Google Scholar
|
|
[10]
|
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 2011, 71(3), 876-902.
Google Scholar
|
|
[11]
|
Q. Ge, G. Ji, J Xu and X. Fan, Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps, Phys. A Stat. Mech. Appl., 2016, 462, 1120-1127.
Google Scholar
|
|
[12]
|
G. Huang and A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 2013, 26, 687-691.
Google Scholar
|
|
[13]
|
H. Hedegaard, L. Chen and M. Warner, Drug-poisoning deaths involving heroin:United States, 2000-2013, NCHS Data Brief., 2015, 190(190), 1-8.
Google Scholar
|
|
[14]
|
C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 2012, 48(1), 121-131.
Google Scholar
|
|
[15]
|
D. Jiang, J. Yu, C. Ji, N. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Modelling, 2011, 54(1-2), 221-232.
Google Scholar
|
|
[16]
|
J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 2011, 24(10), 1685-1692.
Google Scholar
|
|
[17]
|
Q. Liu, D. Jiang, N. Shi, T. Hayat and A. Alsaedi, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Phys. A Stat. Mech. Appl., 2016, 462, 870-882.
Google Scholar
|
|
[18]
|
Y. Lin, D. Jiang and P Xia. Long-time behavior of a stochastic SIR model, Appl. Math. Comput., 2014, 236(6), 1-9.
Google Scholar
|
|
[19]
|
G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 2009, 218(2), 138-141.
Google Scholar
|
|
[20]
|
M. Ma, S. Liu and J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dynam., 2017, 88, 555-565.
Google Scholar
|
|
[21]
|
X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stochastic Process. Appl., 2002, 97, 95-110.
Google Scholar
|
|
[22]
|
X. Mao, Stochastic Differential Equations and Applications, second ed., Horwood. Chichester, UK, 2008.
Google Scholar
|
|
[23]
|
R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl., 2003, 108(1), 93-107.
Google Scholar
|
|
[24]
|
G. P. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput., 2011, 35(1-2), 161-178.
Google Scholar
|
|
[25]
|
E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Phys. A Stat. Mech. Appl., 2005, 354, 111-126.
Google Scholar
|
|
[26]
|
E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 2007, 208(1), 312-324.
Google Scholar
|
|
[27]
|
T. Wingo, T. Nesil, J. Choi and M. Li, Novelty seeking and drug addiction in humans and animals:from behavior to molecules, J. Neuroimmune Pharmacol., 2016, 11, 456-470.
Google Scholar
|
|
[28]
|
X. Wang, J. Yang and X. Li, Dynamics of a heroin epidemic model with very population, Appl. Math., 2011, 2(6), 732-738.
Google Scholar
|
|
[29]
|
J. Yang, L. Wang, X. Li and F. Zhang, Global dynamical analysis of a heroin epidemic model on complex networks, J. Appl. Anal. Comput., 2016, 6(2), 429-442.
Google Scholar
|
|
[30]
|
J. Yu, D. Jiang and N. Shi. Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 2009, 360, 235-244.
Google Scholar
|
|
[31]
|
Y. Zhou, S. Yuan and D. Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Appl. Math. Comput., 2016, 275, 255-267.
Google Scholar
|
|
[32]
|
X. Zhang and K. Wang, Stochastic SIR model with jumps, Appl. Math. Lett., 2013, 26, 867-874.
Google Scholar
|
|
[33]
|
X. Zhang and K. Wang, Stochastic SEIR model with jumps, Appl. Math. Comput., 2014, 239, 133-143.
Google Scholar
|
|
[34]
|
X. Zhang, D. Jiang, T. Hayat and B. Ahmad, Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps, Phys. A Stat. Mech. Appl., 2017, 471, 767-777.
Google Scholar
|