2019 Volume 9 Issue 5
Article Contents

Weichao Qian, Yong Li, Xue Yang. THE ISOENERGETIC KAM-TYPE THEOREM AT RESONANT CASE fOR NEARLY INTEGRABLE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1616-1638. doi: 10.11948/20180008
Citation: Weichao Qian, Yong Li, Xue Yang. THE ISOENERGETIC KAM-TYPE THEOREM AT RESONANT CASE fOR NEARLY INTEGRABLE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1616-1638. doi: 10.11948/20180008

THE ISOENERGETIC KAM-TYPE THEOREM AT RESONANT CASE fOR NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

  • Corresponding author: Email address:liyongmath@163.com(Y. Li) 
  • Fund Project: The second author was supposed by National Basic Research Program of China (grant No. 2013CB834100), NSFC (grant No. 11571065), JilinDRC (grant No. 2017C028-1). The third author was supposed by Science and Technology Developing Plan of Jilin Province (grant No. 20180101220JC)
  • In this paper, we study the persistence of resonant invariant tori on energy surfaces for nearly integrable Hamiltonian systems under the usual R$\ddot{u}$ssmann nondegenerate condition. By a quasilinear iterative scheme, we prove the following things: (1) The majority of resonant tori on a given energy surface will be persisted under R$\ddot{u}$ssmann nondegenerate condition. (2) The maximal number about the preserved frequency components on a perturbed torus is characterized by the smaller of the maximal rank of the Hessian matrices of the unperturbed system and the nondegeneracy of resonance. (3) If unperturbed systems admit subisoenergetic nondegeneracy on an energy surface, then the majority of the unperturbed resonant tori on the energy surface will be persisted and give rise to a family of perturbed tori with the same energy, whose frequency ratios among respective "nondegenerate" components are preserved.
    MSC: 37J40
  • 加载中
  • [1] V. I. Arnold, Proof of a theorem by A. N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk., 1963, 113(5), 13-40.

    Google Scholar

    [2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1991.

    Google Scholar

    [3] G. Benettin, L. Galgani, A. Giorgilli and J. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B, 1984, 79(2), 201-223. doi: 10.1007/BF02748972

    CrossRef Google Scholar

    [4] J. Bricmont, K. Gawedzki and A. Kupiainen, KAM theorem and quantum field theory, Commun. Math. Phys., 1999, 201(2), 699-727.

    Google Scholar

    [5] H. Broer, G. Huitema and M. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Springer-Verlag, Berlin, 1996.

    Google Scholar

    [6] L. Chierchia and C. Falcolini, A direct proof of a theorem by Kolmogorov in Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1994, 21(4), 541-593.

    Google Scholar

    [7] L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H. Poincaré Phys. Theor., 1994, 64(1), 1-144.

    Google Scholar

    [8] S. -N. Chow, Y. Li and Y. Yi, Persistence of invariant tori on submanifolds in Hamiltonian system, J. Nonl. Sci., 2002, 12(6), 585-617.

    Google Scholar

    [9] F. Z. Cong, T. Küpper, Y. Li and J. G. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonl. Sci., 2000, 10(1), 49-68. doi: 10.1007/s003329910003

    CrossRef Google Scholar

    [10] L. Corsi and G. Gentile, Resonant tori of arbitrary codimension for quasi-periodically forced systems, NoDEA Nonlinear Differential Equations Appl., 2017, 24(1), 3-24. doi: 10.1007/s00030-016-0425-7

    CrossRef Google Scholar

    [11] L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Mat., 1994, 25(1), 57-76. doi: 10.1007/BF01232935

    CrossRef Google Scholar

    [12] L. H. Eliasson, Absolutely convergent series expansions for quasiperiodic motions, Math. Phys. Elect. J., 1996, 2, 1-33.

    Google Scholar

    [13] G. Gallavotti, Twistless KAM tori, Commun. Math. Phys., 1994, 164(1), 145-156. doi: 10.1007/BF02108809

    CrossRef Google Scholar

    [14] G. Gallavotti, G. Gentile and V. Mastropietro, Field theory and KAM tori, Math. Phys. Elect. J., 1995, 1, 1-13.

    Google Scholar

    [15] A. González-Enríquez, A. Haro and R. de la Llave, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc., 2014, 1607(227), 1-115.

    Google Scholar

    [16] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk. SSSR, 1954, 98, 527-530.

    Google Scholar

    [17] P. Lancaster, Theory of matrices, Academic Press, New York, 1969.

    Google Scholar

    [18] Y. Li and Y. Yi, A quasiperiodic Poincaré's theorem, Math. Ann., 2003, 326(4), 649-690. doi: 10.1007/s00208-002-0399-0

    CrossRef Google Scholar

    [19] A. G. Medvedev, A. I. Neishtadt and D. V. Treshchëv, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 2015, 28(7), 2105-2130. doi: 10.1088/0951-7715/28/7/2105

    CrossRef Google Scholar

    [20] J. Moser, On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. Math. Phys. K1, 1962, 1-20.

    Google Scholar

    [21] H. Poincaré, Les Méthodes Nouvelles de la Mécaniques Céleste, Ⅰ-Ⅲ, Gauthier-Villars, 1892, 1893, 1899. (The English translation: New methods of celestial mechanics, AIP Press, Williston, 1992.)

    Google Scholar

    [22] J. Pöschel, Integrability of Hamiltonian systems on cantor sets, Commun. Pure Appl. Math., 1982, 35(5), 653-696. doi: 10.1002/cpa.3160350504

    CrossRef Google Scholar

    [23] W. C. Qian, Y. Li and X. Yang, Multiscale KAM theorem for Hamiltonian systems, J. Differ. Equ., 2019, 266(1), 70-86. doi: 10.1016/j.jde.2018.07.039

    CrossRef Google Scholar

    [24] M. Rudnev and S. Wiggins, KAM theory near multiplicity one resonant surfaces in perturbations of A-priori stable Hamiltonian systems, J. Nonl. Sci., 1997, 7(2), 177-209. doi: 10.1007/BF02677977

    CrossRef Google Scholar

    [25] M. B. Sevryuk, Partial preservation of frequencies in KAM theory, Nonlinearity, 2006, 19(5), 1099-1140. doi: 10.1088/0951-7715/19/5/005

    CrossRef Google Scholar

    [26] M. B. Sevryuk, Partial preservation of frequencies and Floquet exponents in KAM theory (Rüssian), translated from Tr. Mat. Inst. Steklova, 2007, 259(2), 174-202.

    Google Scholar

    [27] C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Springer, Berlin, 1971.

    Google Scholar

    [28] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, New Jersey, 1970.

    Google Scholar

    [29] D. V. Treshchëv, Mechanism for destroying resonance tori of Hamiltonian systems, Mat. USSR Sb., 1989, 1439(10), 1325-1346.

    Google Scholar

    [30] J. X. Xu, J. G. You and Q. J. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 1997, 226(3), 375-387. doi: 10.1007/PL00004344

    CrossRef Google Scholar

    [31] J. X. Xu and J. G. You, Persistence of the non-twist torus in nearly integrable Hamiltonian systems, Proc. Amer. Math. Soc., 2010, 138(7), 2385-2395. doi: 10.1090/S0002-9939-10-10151-8

    CrossRef Google Scholar

    [32] L. Xu, Y. Li and Y. Yi, Lower-dimensional tori in multi-scale, nearly integrable Hamiltonian systems, Ann. Henri Poincaré, 2017, 18(1), 53-83. doi: 10.1007/s00023-016-0516-3

    CrossRef Google Scholar

    [33] L. Xu, Y. Li and Y. Yi, Poincaré-Treshchëv mechanism in multi-scale, nearly integrable Hamiltonian systems, J. Nonl. Sci., 2018, 28(1), 337-369. doi: 10.1007/s00332-017-9410-5

    CrossRef Google Scholar

Article Metrics

Article views(2885) PDF downloads(648) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint