[1]
|
V. I. Arnold, Proof of a theorem by A. N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk., 1963, 113(5), 13-40.
Google Scholar
|
[2]
|
V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1991.
Google Scholar
|
[3]
|
G. Benettin, L. Galgani, A. Giorgilli and J. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B, 1984, 79(2), 201-223. doi: 10.1007/BF02748972
CrossRef Google Scholar
|
[4]
|
J. Bricmont, K. Gawedzki and A. Kupiainen, KAM theorem and quantum field theory, Commun. Math. Phys., 1999, 201(2), 699-727.
Google Scholar
|
[5]
|
H. Broer, G. Huitema and M. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Springer-Verlag, Berlin, 1996.
Google Scholar
|
[6]
|
L. Chierchia and C. Falcolini, A direct proof of a theorem by Kolmogorov in Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1994, 21(4), 541-593.
Google Scholar
|
[7]
|
L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H. Poincaré Phys. Theor., 1994, 64(1), 1-144.
Google Scholar
|
[8]
|
S. -N. Chow, Y. Li and Y. Yi, Persistence of invariant tori on submanifolds in Hamiltonian system, J. Nonl. Sci., 2002, 12(6), 585-617.
Google Scholar
|
[9]
|
F. Z. Cong, T. Küpper, Y. Li and J. G. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonl. Sci., 2000, 10(1), 49-68. doi: 10.1007/s003329910003
CrossRef Google Scholar
|
[10]
|
L. Corsi and G. Gentile, Resonant tori of arbitrary codimension for quasi-periodically forced systems, NoDEA Nonlinear Differential Equations Appl., 2017, 24(1), 3-24. doi: 10.1007/s00030-016-0425-7
CrossRef Google Scholar
|
[11]
|
L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Mat., 1994, 25(1), 57-76. doi: 10.1007/BF01232935
CrossRef Google Scholar
|
[12]
|
L. H. Eliasson, Absolutely convergent series expansions for quasiperiodic motions, Math. Phys. Elect. J., 1996, 2, 1-33.
Google Scholar
|
[13]
|
G. Gallavotti, Twistless KAM tori, Commun. Math. Phys., 1994, 164(1), 145-156. doi: 10.1007/BF02108809
CrossRef Google Scholar
|
[14]
|
G. Gallavotti, G. Gentile and V. Mastropietro, Field theory and KAM tori, Math. Phys. Elect. J., 1995, 1, 1-13.
Google Scholar
|
[15]
|
A. González-Enríquez, A. Haro and R. de la Llave, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc., 2014, 1607(227), 1-115.
Google Scholar
|
[16]
|
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk. SSSR, 1954, 98, 527-530.
Google Scholar
|
[17]
|
P. Lancaster, Theory of matrices, Academic Press, New York, 1969.
Google Scholar
|
[18]
|
Y. Li and Y. Yi, A quasiperiodic Poincaré's theorem, Math. Ann., 2003, 326(4), 649-690. doi: 10.1007/s00208-002-0399-0
CrossRef Google Scholar
|
[19]
|
A. G. Medvedev, A. I. Neishtadt and D. V. Treshchëv, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 2015, 28(7), 2105-2130. doi: 10.1088/0951-7715/28/7/2105
CrossRef Google Scholar
|
[20]
|
J. Moser, On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. Math. Phys. K1, 1962, 1-20.
Google Scholar
|
[21]
|
H. Poincaré, Les Méthodes Nouvelles de la Mécaniques Céleste, Ⅰ-Ⅲ, Gauthier-Villars, 1892, 1893, 1899. (The English translation: New methods of celestial mechanics, AIP Press, Williston, 1992.)
Google Scholar
|
[22]
|
J. Pöschel, Integrability of Hamiltonian systems on cantor sets, Commun. Pure Appl. Math., 1982, 35(5), 653-696. doi: 10.1002/cpa.3160350504
CrossRef Google Scholar
|
[23]
|
W. C. Qian, Y. Li and X. Yang, Multiscale KAM theorem for Hamiltonian systems, J. Differ. Equ., 2019, 266(1), 70-86. doi: 10.1016/j.jde.2018.07.039
CrossRef Google Scholar
|
[24]
|
M. Rudnev and S. Wiggins, KAM theory near multiplicity one resonant surfaces in perturbations of A-priori stable Hamiltonian systems, J. Nonl. Sci., 1997, 7(2), 177-209. doi: 10.1007/BF02677977
CrossRef Google Scholar
|
[25]
|
M. B. Sevryuk, Partial preservation of frequencies in KAM theory, Nonlinearity, 2006, 19(5), 1099-1140. doi: 10.1088/0951-7715/19/5/005
CrossRef Google Scholar
|
[26]
|
M. B. Sevryuk, Partial preservation of frequencies and Floquet exponents in KAM theory (Rüssian), translated from Tr. Mat. Inst. Steklova, 2007, 259(2), 174-202.
Google Scholar
|
[27]
|
C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Springer, Berlin, 1971.
Google Scholar
|
[28]
|
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, New Jersey, 1970.
Google Scholar
|
[29]
|
D. V. Treshchëv, Mechanism for destroying resonance tori of Hamiltonian systems, Mat. USSR Sb., 1989, 1439(10), 1325-1346.
Google Scholar
|
[30]
|
J. X. Xu, J. G. You and Q. J. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 1997, 226(3), 375-387. doi: 10.1007/PL00004344
CrossRef Google Scholar
|
[31]
|
J. X. Xu and J. G. You, Persistence of the non-twist torus in nearly integrable Hamiltonian systems, Proc. Amer. Math. Soc., 2010, 138(7), 2385-2395. doi: 10.1090/S0002-9939-10-10151-8
CrossRef Google Scholar
|
[32]
|
L. Xu, Y. Li and Y. Yi, Lower-dimensional tori in multi-scale, nearly integrable Hamiltonian systems, Ann. Henri Poincaré, 2017, 18(1), 53-83. doi: 10.1007/s00023-016-0516-3
CrossRef Google Scholar
|
[33]
|
L. Xu, Y. Li and Y. Yi, Poincaré-Treshchëv mechanism in multi-scale, nearly integrable Hamiltonian systems, J. Nonl. Sci., 2018, 28(1), 337-369. doi: 10.1007/s00332-017-9410-5
CrossRef Google Scholar
|