[1]
|
M. P. Aghababa, S. Khanmohammadi and G. Alizadeh, Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Appl. Math. Model., 2011, 35(6), 3080-3091. doi: 10.1016/j.apm.2010.12.020
CrossRef Google Scholar
|
[2]
|
I. Ahmad, A. Saaban, A. Ibrahim and M. Shahzad, Robust finite-time anti-synchronization of chaotic systems with different dimensions, Mathematics, 2015, 3(4), 1222-1240. doi: 10.3390/math3041222
CrossRef Google Scholar
|
[3]
|
J. Almeida, C. Silvestre and A. M. Pascoal, Event-triggered output synchronization of heterogeneous multi-agent systems, Int. J. Robust Nonlinear Control, 2017, 27(8), 1302-1338. doi: 10.1002/rnc.3629
CrossRef Google Scholar
|
[4]
|
A. Bondavalli, F. Brancati, A. Flammini and S. Rinaldi, Master failure detection protocol in internal synchronization environment, IEEE Trans. Instrum. Meas., 2012, 62(1), 4-12.
Google Scholar
|
[5]
|
Y. Cai, Y. Kang and W. Wang, A stochastic sirs epidemic model with nonlinear incidence rate, Appl. Math. Comput., 2017, 305, 221-240.
Google Scholar
|
[6]
|
J. Cao, Z. Wang and Y. Sun, Synchronization in an array of linearly stochastically coupled networks with time delays, Physica A, 2007, 385(2), 718-728. doi: 10.1016/j.physa.2007.06.043
CrossRef Google Scholar
|
[7]
|
T. Chen, Z. Sun and B. Wu, Stability of multi-group models with cross-dispersal based on graph theory, Appl. Math. Model., 2017, 47, 745-754. doi: 10.1016/j.apm.2017.03.055
CrossRef Google Scholar
|
[8]
|
H. Du, Y. He and Y. Cheng, Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control, IEEE Trans. Circuits Syst. I-Regul. Pap., 2014, 61(6), 1778-1788. doi: 10.1109/TCSI.2013.2295012
CrossRef Google Scholar
|
[9]
|
J. Geng, M. Liu and Y. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlinear Sci. Numer. Simul., 2017, 53, 65-82. doi: 10.1016/j.cnsns.2017.04.022
CrossRef Google Scholar
|
[10]
|
B. Guo, Y. Xiao and C. Zhang, Graph-theoretic approach to exponential synchronization of coupled systems on networks with mixed time-varying delays, J. Franklin Inst., 2017, 354(12), 5067-5090. doi: 10.1016/j.jfranklin.2017.05.029
CrossRef Google Scholar
|
[11]
|
Y. Guo, X. Ding and Y. Li, Stochastic stability for pantograph multi-group models with dispersal and stochastic perturbation, J. Franklin Inst., 2016, 353(13), 2980-2998. doi: 10.1016/j.jfranklin.2016.06.001
CrossRef Google Scholar
|
[12]
|
K. Hong and P. Weng, Stability and traveling waves of diffusive predator-prey model with age-structure and nonlocal effect, J. Appl. Anal. Comput., 2012, 2(2), 173-192.
Google Scholar
|
[13]
|
D. Huang, M. Jiang and J. Jian, Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control, Neurocomputing, 2017, 266, 527-539. doi: 10.1016/j.neucom.2017.05.075
CrossRef Google Scholar
|
[14]
|
M. Karimi-Ghartemani and M. R. Iravani, A method for synchronization of power electronic converters in polluted and variable-frequency environments, IEEE Trans. Power Syst., 2004, 19(3), 1263-1270.
Google Scholar
|
[15]
|
M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 2010, 248(1), 1-20.
Google Scholar
|
[16]
|
S. Li, H. Su and X. Ding, Synchronized stationary distribution of hybrid stochastic coupled systems with applications to coupled oscillators and a chua's circuits network, J. Franklin Inst., 2018, 355(17), 8743-8765. doi: 10.1016/j.jfranklin.2018.09.015
CrossRef Google Scholar
|
[17]
|
W. Li, S. Wang, H. Su and K. Wang, Global exponential stability for stochastic networks of coupled oscillators with variable delay, Commun. Nonlinear Sci. Numer. Simul., 2015, 22(1–3), 877-888.
Google Scholar
|
[18]
|
M. Liu, Dynamics of a stochastic regime-switching predator-prey model with modified leslie-gower holling-type ii schemes and prey harvesting, Nonlinear Dyn., 2019, 96(1), 417-442.
Google Scholar
|
[19]
|
Y. Liu, W. Li and J. Feng, The stability of stochastic coupled systems with time-varying coupling and general topology structure, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29(9), 4189-4200. doi: 10.1109/TNNLS.2017.2757767
CrossRef Google Scholar
|
[20]
|
X. Mao, Stochastic Differential Equations and Their Applications Horwood, 1997.
Google Scholar
|
[21]
|
X. Peng, H. Wu, K. Song and J. Shi, Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays., Neural Netw., 2017, 94, 46-54. doi: 10.1016/j.neunet.2017.06.011
CrossRef Google Scholar
|
[22]
|
R. Trudeau, Introduction to graph theory, Courier Dover Publications, 2013.
Google Scholar
|
[23]
|
D. Wang, S. Liu, K. Liu and Y. Zhao, Control and synchronization of julia sets generated by a class of complex time-delay rational, J. Appl. Anal. Comput., 2016, 6(4), 1049-1063.
Google Scholar
|
[24]
|
H. Wang, J.-P. Wu, X.-S. Sheng et al., A new stability result for nonlinear cascade time-delay system and its application in chaos control, Nonlinear Dyn., 2015, 80(1-2), 221-226. doi: 10.1007/s11071-014-1862-7
CrossRef Google Scholar
|
[25]
|
J. Wang, H. Zhang, Z. Wang and D. W. Gao, Finite-time synchronization of coupled hierarchical hybrid neural networks with time-varying delays, IEEE Trans. Cybern., 2017, 47(10), 2995-3004. doi: 10.1109/TCYB.2017.2688395
CrossRef Google Scholar
|
[26]
|
M. Wang and W. Li, Stability of random impulsive coupled systems on networks with markovian switching, Stoch. Anal. Appl., 2019, DOI: 10.1080/07362994.2019.1643247, 1-26.
CrossRef Google Scholar
|
[27]
|
P. Wang, Y. Hong and H. Su, Asymptotic stability in probability for discrete-time stochastic coupled systems on networks with multiple dispersal, Int. J. Robust Nonlinear Control, 2017, 28(4), 1119-1217.
Google Scholar
|
[28]
|
P. Wang, B. Zhang and H. Su, Stabilization of stochastic uncertain complex-valued delayed networks via aperiodically intermittent nonlinear control, IEEE Trans. Syst., Man, Cybern., Syst., 2018, 49(3), 649-662.
Google Scholar
|
[29]
|
X. Wang, J. A. Fang, H. Mao and A. Dai, Finite-time global synchronization for a class of markovian jump complex networks with partially unknown transition rates under feedback control, Nonlinear Dyn., 2015, 79(1), 47-61.
Google Scholar
|
[30]
|
Z. Wang, Y. Wang and Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE Trans. Neural Netw., 2009, 21(1), 11-25.
Google Scholar
|
[31]
|
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks., Nature, 1998, 393(6684), 440. doi: 10.1038/30918
CrossRef Google Scholar
|
[32]
|
D. West, Introduction to Graph Theory. Prentice Hall, 21, 1996.
Google Scholar
|
[33]
|
K. Wu, T. Tian, L. Wang and W. Wang, Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control, Neurocomputing, 2016, 197, 113-118. doi: 10.1016/j.neucom.2016.02.050
CrossRef Google Scholar
|
[34]
|
X. Wu, C. Xu and J. Feng, Complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and coupling time delays, Commun. Nonlinear Sci. Numer. Simul., 2015, 20(3), 1004-1014. doi: 10.1016/j.cnsns.2014.07.003
CrossRef Google Scholar
|
[35]
|
Y. Wu, B. Chen and W. Li, Synchronization of stochastic coupled systems via feedback control based on discrete-time state observations, Nonlinear Anal. Hybrid Syst, 2017, 26, 68-85. doi: 10.1016/j.nahs.2017.04.006
CrossRef Google Scholar
|
[36]
|
Y. Wu, J. Zhu and W. Li, Intermittent discrete observation control for synchronization of stochastic neural networks, IEEE Trans. Cybern., 2019, DOI: 10.1109/TCYB.2019.2930579.
CrossRef Google Scholar
|
[37]
|
Q. Xie, G. Si, Y. Zhang et al., Finite-time synchronization and identification of complex delayed networks with markovian jumping parameters and stochastic perturbations, Chaos Solitons Fractals, 2016, 86, 35-49. doi: 10.1016/j.chaos.2016.02.021
CrossRef Google Scholar
|
[38]
|
Y. Xu, Q. Li and W. Li, Periodically intermittent discrete observation control for synchronization of fractional-order coupled systems, Commun. Nonlinear Sci. Numer. Simul., 2019, 74, 219-235. doi: 10.1016/j.cnsns.2019.03.014
CrossRef Google Scholar
|
[39]
|
Y. Xu, H. Zhou and W. Li, Stabilisation of stochastic delayed systems with lévy noise on networks via periodically intermittent control, Int. J. Control, 2018, DOI: 10.1080/00207179.2018.1479538, 1-14.
CrossRef Google Scholar
|
[40]
|
J. Yin, Y. Li and A. Gu, Regularity of pullback attractors for non-autonomous stochastic coupled reaction-diffusion systems, J. Appl. Anal. Comput., 2017, 7(3), 884-898.
Google Scholar
|
[41]
|
W. Ying, J. Cao and G. Wen, Quantized synchronization of chaotic neural networks with scheduled output feedback control, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28(11), 2638-2647. doi: 10.1109/TNNLS.2016.2598730
CrossRef Google Scholar
|
[42]
|
W. Yu, G. Chen and J. Cao, Adaptive synchronization of uncertain coupled stochastic complex networks, Asian J. Control, 2011, 13(3), 418-429.
Google Scholar
|
[43]
|
S. Zhai, Y. Zhou and Q. Li, Synchronization for coupled nonlinear systems with disturbances in input and measured output, Appl. Math. Comput., 2017, 294, 227-237.
Google Scholar
|
[44]
|
C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling, Math. Meth. Appl. Sci., 2014, 37(8), 1179-1190. doi: 10.1002/mma.2879
CrossRef Google Scholar
|
[45]
|
C. Zhang and L. Shi, Exponential synchronization of stochastic complex networks with multi-weights: A graph-theoretic approach, Journal of the Franklin Institute, 2019, 356(7), 4106-4123. doi: 10.1016/j.jfranklin.2019.02.027
CrossRef Google Scholar
|
[46]
|
H. Zhou and W. Li, Synchronisation of stochastic-coupled intermittent control systems with delays and lévy noise on networks without strong connectedness, IET Control Theory Appl., 2018, 13(1), 36-49.
Google Scholar
|