[1]
|
P. F. Antonietti, P. Houston, X. Hu, et al, Multigrid algorithms for hp-version interiori penalty discontinuous Galerkin methods on polygonal and polyhedral meshes, Calcolo, 2017, 54, 1169-1198. doi: 10.1007/s10092-017-0223-6
CrossRef Google Scholar
|
[2]
|
B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 2009, 47(2), 1391-1420.
Google Scholar
|
[3]
|
C. E. Baumann and J. T. Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 1999, 175(3-4), 311-341.
Google Scholar
|
[4]
|
A. Buffa, T. J. R. Hughes, and G. Sangalli, Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems, SIAM J. Numer. Anal., 2006, 44, 1420-1440. doi: 10.1137/050640382
CrossRef Google Scholar
|
[5]
|
A. Cangiani, E. H. Georgoulis, T. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 2017, 137, 857-893. doi: 10.1007/s00211-017-0891-9
CrossRef Google Scholar
|
[6]
|
J. Du and E. Chung, An adaptive staggered discontinuous Galerkin method for steady steady state convection-diffusion equation, J. Sci. Comput., 2018. DOI: 10.1007/s10915-018-0695-9.
CrossRef Google Scholar
|
[7]
|
P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 2002, 39(6), 2133-2163. doi: 10.1137/S0036142900374111
CrossRef Google Scholar
|
[8]
|
T. Linß, Layer-adapted meshes for reaction-convection-diffusion problems, Springer-Verlag, Berlin, 2010.
Google Scholar
|
[9]
|
J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
Google Scholar
|
[10]
|
D. A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C.R. Math. Acad. Sci. Paris, 2015, 353(1), 31-34. doi: 10.1016/j.crma.2014.10.013
CrossRef Google Scholar
|
[11]
|
H.-G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems(Second edition), Springer-Verlag, Berlin, 2008.
Google Scholar
|
[12]
|
C. Talischi, A family of $H(div)$ finite element approximations on polygonal meshes, SIAM J. Sci. Comput., 2015, 37, 1067-1088. doi: 10.1137/140979873
CrossRef Google Scholar
|
[13]
|
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 2014, 83, 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4
CrossRef Google Scholar
|