2020 Volume 10 Issue 3
Article Contents

Runchang Lin, Xiu Ye, Shangyou Zhang, Peng Zhu. ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 830-841. doi: 10.11948/20180164
Citation: Runchang Lin, Xiu Ye, Shangyou Zhang, Peng Zhu. ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 830-841. doi: 10.11948/20180164

ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS

  • Corresponding author: Email address:zhupeng.hnu@gmail.com(P. Zhu)
  • Fund Project: This research of the first author was partially supported by a University Research Grant of Texas A & M International University. This research of the second author was supported in part by National Science Foundation under Grant DMS-1620016. This research of the third author was supported in part by NSF of China (No.11571023). This research of the fourth author was supported in part by Natural Science Foundation of Zhejiang (No.LY19A010008)
  • In this article, we studied a discontinuous Galerkin finite element method for convection-diffusion-reaction problems with singular perturbation. Our approach is highly flexible by allowing the use of discontinuous approximating function on polytopal mesh without imposing extra conditions on the convection coefficient. A priori error estimate is devised in a suitable energy norm on general polytopal mesh. Numerical examples are provided.
    MSC: 65N15, 65N30
  • 加载中
  • [1] P. F. Antonietti, P. Houston, X. Hu, et al, Multigrid algorithms for hp-version interiori penalty discontinuous Galerkin methods on polygonal and polyhedral meshes, Calcolo, 2017, 54, 1169-1198. doi: 10.1007/s10092-017-0223-6

    CrossRef Google Scholar

    [2] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 2009, 47(2), 1391-1420.

    Google Scholar

    [3] C. E. Baumann and J. T. Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 1999, 175(3-4), 311-341.

    Google Scholar

    [4] A. Buffa, T. J. R. Hughes, and G. Sangalli, Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems, SIAM J. Numer. Anal., 2006, 44, 1420-1440. doi: 10.1137/050640382

    CrossRef Google Scholar

    [5] A. Cangiani, E. H. Georgoulis, T. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 2017, 137, 857-893. doi: 10.1007/s00211-017-0891-9

    CrossRef Google Scholar

    [6] J. Du and E. Chung, An adaptive staggered discontinuous Galerkin method for steady steady state convection-diffusion equation, J. Sci. Comput., 2018. DOI: 10.1007/s10915-018-0695-9.

    CrossRef Google Scholar

    [7] P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 2002, 39(6), 2133-2163. doi: 10.1137/S0036142900374111

    CrossRef Google Scholar

    [8] T. Linß, Layer-adapted meshes for reaction-convection-diffusion problems, Springer-Verlag, Berlin, 2010.

    Google Scholar

    [9] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

    Google Scholar

    [10] D. A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C.R. Math. Acad. Sci. Paris, 2015, 353(1), 31-34. doi: 10.1016/j.crma.2014.10.013

    CrossRef Google Scholar

    [11] H.-G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems(Second edition), Springer-Verlag, Berlin, 2008.

    Google Scholar

    [12] C. Talischi, A family of $H(div)$ finite element approximations on polygonal meshes, SIAM J. Sci. Comput., 2015, 37, 1067-1088. doi: 10.1137/140979873

    CrossRef Google Scholar

    [13] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 2014, 83, 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4

    CrossRef Google Scholar

Figures(4)  /  Tables(4)

Article Metrics

Article views(2538) PDF downloads(950) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint