2020 Volume 10 Issue 2
Article Contents

Zuomao Yan, Xiumei Jia. STEPANOV-LIKE PSEUDO ALMOST PERIODIC SOLUTIONS FOR IMPULSIVE PERTURBED PARTIAL STOCHASTIC DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 530-568. doi: 10.11948/20180304
Citation: Zuomao Yan, Xiumei Jia. STEPANOV-LIKE PSEUDO ALMOST PERIODIC SOLUTIONS FOR IMPULSIVE PERTURBED PARTIAL STOCHASTIC DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 530-568. doi: 10.11948/20180304

STEPANOV-LIKE PSEUDO ALMOST PERIODIC SOLUTIONS FOR IMPULSIVE PERTURBED PARTIAL STOCHASTIC DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL

  • Corresponding author: Email address: yanzuomao@163.com(Z. Yan) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11461019)
  • This paper is mainly concerned with the Stepanov-like pseudo almost periodicity to a class of impulsive perturbed partial stochastic differential equations. Firstly, we prove the existence of p-mean piecewise Stepanov-like pseudo almost periodic mild solutions for the impulsive stochastic dynamical system in a Hilbert space under non-Lipschitz conditions. The results are obtained by using the fixed point techniques with fractional power arguments. Then the existence of optimal pairs of system governed by impulsive partial stochastic differential equations is also obtained. Finally, an example is provided to illustrate the developed theory.
    MSC: 34A37, 60H10, 35B15, 43A60, 93E20
  • 加载中
  • [1] P. Balasubramaniam and P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 2017, 174(1), 139-155.

    Google Scholar

    [2] E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal. Real World Appl., 1987, 11, 1399-1404.

    Google Scholar

    [3] M. Baroun, K. Ezzinbi, K. Khalil and L. Maniar, Pseudo almost periodic solutions for some parabolic evolution equations with Stepanov-like pseudo almost periodic forcing terms, J. Math. Anal. Appl., 2018, 462(1), 233-262. doi: 10.1016/j.jmaa.2018.01.037

    CrossRef Google Scholar

    [4] P.H. Bezandry and T. Diagana, Existence of S2-almost periodic solutions to a class of nonautonomous stochastic evolution equations, Electron. J. Qual. Theory Differ. Equ., 2008, 35, 1-19.

    Google Scholar

    [5] P.H. Bezandry and T. Diagana, Almost Periodic Stochastic Processes, SpringerVerlag, New York Inc., 2011.

    Google Scholar

    [6] C. Burgos, J.-C. Cortés, A. Debbouche, L. Villafuerte and R.-J. Villanueva, Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus, Appl. Math. Comput., 2019, 352, 15-29.

    Google Scholar

    [7] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselski-Schaefer type, Math. Nachr., 1998, 189, 23-31. doi: 10.1002/mana.19981890103

    CrossRef Google Scholar

    [8] J. Cao, A. Debbouche and Y. Zhou, Asymptotically almost periodicity for a class of Weyl-Liouville fractional evolution equations, Mediterr. J. Math., 2018, 15(4), 1-22.

    Google Scholar

    [9] J. Cao, A. Debbouche and Y. Zhou, Asymptotic almost-periodicity for a class of Weyl-Like fractional difference equations, Mathematics, 2019, 7(7), 592-616. doi: 10.3390/math7070592

    CrossRef Google Scholar

    [10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1992.

    Google Scholar

    [11] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations, Nonlinear Anal., 2008, 69(12), 4277-4285. doi: 10.1016/j.na.2007.10.051

    CrossRef Google Scholar

    [12] M.A. Diop, K. Ezzinbi and M.M. Mbaye, Measure theory and S2-pseudo almost periodic and automorphic process: application to stochastic evolution equations, Afrika Mat., 2015, 26(5-6), 779-812. doi: 10.1007/s13370-014-0247-x

    CrossRef Google Scholar

    [13] A. Harrat, J.J. Nieto and A. Debbouche, Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential, J. Comput. Appl. Math., 2018, 344, 725-737. doi: 10.1016/j.cam.2018.05.031

    CrossRef Google Scholar

    [14] Z. Hu and Z. Jin, Stepanov-like pseudo almost periodic mild solutions to nonautonomous neutral partial evolution equations, Nonlinear Anal., 2012, 75(1), 244-252. doi: 10.1016/j.na.2011.08.026

    CrossRef Google Scholar

    [15] L. Hu and Y. Ren, Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays, Acta Appl. Math., 2010, 111, 303-317. doi: 10.1007/s10440-009-9546-x

    CrossRef Google Scholar

    [16] J. Liu and C. Zhang, Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations, Adv. Differ. Equ., 2013, 2013(11), 1-21.

    Google Scholar

    [17] E. B. Davies, Semigroups of Linear Operators and Applications to Partial Differential Equations, Bulletin of the London Mathematical Society, 1984, 16(6), 650-651. doi: 10.1112/blms/16.6.650

    CrossRef Google Scholar

    [18] L. Peng, Y. Zhou and A. Debbouche, Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces, Chaos Solitons Fractals, 2019, 118, 234-241. doi: 10.1016/j.chaos.2018.11.025

    CrossRef Google Scholar

    [19] Y. Ren, X. Jia and R. Sakthivel, The p-th moment stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion, Appl. Anal., 2017, 96(6), 988-1003. doi: 10.1080/00036811.2016.1169529

    CrossRef Google Scholar

    [20] R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 2013, 81, 70-86. doi: 10.1016/j.na.2012.10.009

    CrossRef Google Scholar

    [21] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

    Google Scholar

    [22] N. Song, H. Li and C. Chen, Piecewise weighted pseudo almost periodic functions and applications to impulsive differential equations, Math. Slovaca, 2017, 66(5), 1139-1156.

    Google Scholar

    [23] G.T. Stamov and I.M. Stamova, Almost periodic solutions for impulsive fractional differential equations, Dyn. Syst., 2014, 29(1), 119-132.

    Google Scholar

    [24] J. Wang, M. Fečkan and A. Debbouche, Time optimal control of a system governed by non-instantaneous impulsive differential equations, J. Optim. Theory Appl., 2019, 182(2), 573-587. doi: 10.1007/s10957-018-1313-6

    CrossRef Google Scholar

    [25] Z. Xia, Pseudo almost periodic mild solution of nonautonomous impulsive integro-differential equations, Mediterr. J. Math., 2016, 13(3), 1065-1086. doi: 10.1007/s00009-015-0532-4

    CrossRef Google Scholar

    [26] Z. Xia and D. Wang, Piecewise weighted pseudo almost periodic solutions of impulsive integro-differential equations via fractional operators, Electron. J. Differential Equations, 2015, 2015, 1-18.

    Google Scholar

    [27] Z. Yan and F. Lu, Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay, J. Appl. Anal. Comput., 2015, 5(3), 329-346.

    Google Scholar

    [28] Z. Yan and F. Lu, Existence and exponential stability of pseudo almost periodic solutions for impulsive nonautonomous partial stochastic evolution equations, Adv. Differ. Equ., 2016, 2016(294), 1-37.

    Google Scholar

    [29] Z. Yan and F. Lu, The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control, 2016, 89(8), 1592-1612. doi: 10.1080/00207179.2016.1140229

    CrossRef Google Scholar

    [30] Z. Yan, and F. Lu, Solvability and optimal controls of a fractional impulsive stochastic partial integro-differential equation with state-dependent delay, Acta Appl. Math., 2018, 155(1), 57-84. doi: 10.1007/s10440-017-0145-y

    CrossRef Google Scholar

    [31] Z. Yan and H. Zhang, Existence of Stepanov-like square-mean pseudo almost periodic solutions to partial stochastic neutral differential equations, Ann. Funct. Anal., 2015, 6(1), 116-138. doi: 10.15352/afa/06-1-10

    CrossRef Google Scholar

Article Metrics

Article views(3148) PDF downloads(849) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint