[1]
|
J. H. E. Cartwright, Stiffness Lyapunov exponents and attractor dimension, Phys. Lett. A., 1999, 264, 298-302. doi: 10.1016/S0375-9601(99)00793-8
CrossRef Google Scholar
|
[2]
|
S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 2005.
Google Scholar
|
[3]
|
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
Google Scholar
|
[4]
|
Z. M. He, Bo. Li, Complex dynamic behavior of a discrete-time predator-prey system of Holling-Ⅲ type, Advances in Difference Equations, 2014, 180.
Google Scholar
|
[5]
|
Z. M. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predatorprey system, Nonlinear Anal. Real World Appl., 2011, 12, 403-417. doi: 10.1016/j.nonrwa.2010.06.026
CrossRef Google Scholar
|
[6]
|
S. B. Hsu, T.W. Hwang, Global Stability for a Class of Predator-Prey Systems, SIAM J. APPL. MATH., 1995, 55, 763-783. doi: 10.1137/S0036139993253201
CrossRef Google Scholar
|
[7]
|
D. P. Hu and H. J. Cao, Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun Nonlinear Sci Numer Simulat, 2015, 22, 702-715. doi: 10.1016/j.cnsns.2014.09.010
CrossRef Google Scholar
|
[8]
|
J. Huang, S. Ruan, and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, Journal of Differential Equations, 2014, 257, 1721-1752. doi: 10.1016/j.jde.2014.04.024
CrossRef Google Scholar
|
[9]
|
J. L. Kaplan, Y. A. Yorke, A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 1979, 67, 93-108. doi: 10.1007/BF01221359
CrossRef Google Scholar
|
[10]
|
Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, , 2nd Ed. SpringerVerlag, New York, 1998.
Google Scholar
|
[11]
|
S. Lynch, Dynamical Systems with Applications Using Mathematica, Birkhäuser, Boston, 2007.
Google Scholar
|
[12]
|
S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predatorprey system with simplified Monod-Haldane functional response, Advances in Difference Equations, 2015, 345.
Google Scholar
|
[13]
|
S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predatorprey system, Computational Ecology and Software, 2015, 5(2), 187-200.
Google Scholar
|
[14]
|
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd Ed. Boca Raton, London, New York, 1999.
Google Scholar
|
[15]
|
W. Tan, J. Gao, and W. Fan, Bifurcation Analysis and Chaos Control in a Discrete Epidemic System, Discrete Dynamics in Nature and Society, 2015. DOI: 10.1155/2015/974868.
CrossRef Google Scholar
|
[16]
|
C. Wang, X. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J Applied Analysis and Computation, 2014, 4, 419-435.
Google Scholar
|
[17]
|
S. Winggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.
Google Scholar
|
[18]
|
M. Zhao, C. Li, and J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, Journal of Applied Analysis and Computation, 2017, 7, 478-500. DOI:10.11948/2017030.
CrossRef Google Scholar
|
[19]
|
M. Zhao, Z. Xuan, and C. Li, Dynamics of a discrete-time predator-prey system, Advances in Difference Equations, 2016, 191. DOI: 10.1186/s13662-016-0903-6.
CrossRef Google Scholar
|